1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
|
/* $Id: tests.cpp 148 2005-04-19 15:12:26Z kamenik $ */
/* Copyright 2004, Ondra Kamenik */
#include "SylvException.h"
#include "tl_exception.h"
#include "gs_tensor.h"
#include "factory.h"
#include "monoms.h"
#include "t_container.h"
#include "stack_container.h"
#include "t_polynomial.h"
#include "rfs_tensor.h"
#include "ps_tensor.h"
#include "tl_static.h"
#include <cstdio>
#include <cstring>
#include <ctime>
class TestRunnable {
char name[100];
public:
int dim; // dimension of the solved problem
int nvar; // number of variable of the solved problem
TestRunnable(const char* n, int d, int nv)
: dim(d), nvar(nv)
{strncpy(name, n, 100);}
bool test() const;
virtual bool run() const =0;
const char* getName() const
{return name;}
protected:
template<class _Ttype>
static bool index_forward(const Symmetry& s, const IntSequence& nvs);
template <class _Ttype>
static bool index_backward(const Symmetry& s, const IntSequence& nvs);
template <class _Ttype>
static bool index_offset(const Symmetry& s, const IntSequence& nvs);
static bool fold_unfold(const FTensor* folded);
static bool fs_fold_unfold(int r, int nv, int dim)
{
Factory f;
FTensor* folded = f.make<FFSTensor>(r, nv, dim);
return fold_unfold(folded); // folded deallocated in fold_unfold
}
static bool r_fold_unfold(int r, int nv, int dim)
{
Factory f;
FTensor* folded = f.make<FRTensor>(r, nv, dim);
return fold_unfold(folded); // folded deallocated in fold_unfold
}
static bool gs_fold_unfold(int r, const Symmetry& s, const IntSequence& nvs)
{
Factory f;
FTensor* folded = f.make<FGSTensor>(r, s, nvs);
return fold_unfold(folded); // folded deallocated in fold_unfold
}
static bool dense_prod(const Symmetry& bsym, const IntSequence& bnvs,
int hdim, int hnv, int rows);
static bool folded_monomial(int ng, int nx, int ny, int nu, int dim);
static bool unfolded_monomial(int ng, int nx, int ny, int nu, int dim);
static bool fold_zcont(int nf, int ny, int nu, int nup, int nbigg,
int ng, int dim);
static bool unfold_zcont(int nf, int ny, int nu, int nup, int nbigg,
int ng, int dim);
static bool folded_contraction(int r, int nv, int dim);
static bool unfolded_contraction(int r, int nv, int dim);
static bool poly_eval(int r, int nv, int maxdim);
};
bool TestRunnable::test() const
{
printf("Running test <%s>\n",name);
clock_t start = clock();
bool passed = run();
clock_t end = clock();
printf("CPU time %8.4g (CPU seconds)..................",
((double)(end-start))/CLOCKS_PER_SEC);
if (passed) {
printf("passed\n\n");
return passed;
} else {
printf("FAILED\n\n");
return passed;
}
}
/****************************************************/
/* definition of TestRunnable static methods */
/****************************************************/
template <class _Ttype>
bool TestRunnable::index_forward(const Symmetry& s, const IntSequence& nvs)
{
int fails = 0;
int ndecr = 0;
int nincr = 0;
_Ttype dummy(0, TensorDimens(s, nvs));
typename _Ttype::index run = dummy.end();
do {
--run;
ndecr++;
typename _Ttype::index run2 = dummy.begin();
for (int i = 0; i < *run; i++) {
++run2;
nincr++;
}
if (! (run == run2))
fails++;
} while (run != dummy.begin());
printf("\tnumber of columns = %d\n",dummy.ncols());
printf("\tnumber of increments = %d\n",nincr);
printf("\tnumber of decrements = %d\n",ndecr);
printf("\tnumber of failures = %d\n",fails);
return fails == 0;
}
template <class _Ttype>
bool TestRunnable::index_backward(const Symmetry& s, const IntSequence& nvs)
{
int fails = 0;
int ndecr = 0;
int nincr = 0;
_Ttype dummy(0, TensorDimens(s, nvs));
typename _Ttype::index run = dummy.begin();
while (run != dummy.end()) {
typename _Ttype::index run2 = dummy.end();
for (int i = 0; i < dummy.ncols() - *run; i++) {
--run2;
ndecr++;
}
if (! (run == run2))
fails++;
++run;
nincr++;
}
printf("\tnumber of columns = %d\n",dummy.ncols());
printf("\tnumber of increments = %d\n",nincr);
printf("\tnumber of decrements = %d\n",ndecr);
printf("\tnumber of failures = %d\n",fails);
return fails == 0;
}
template <class _Ttype>
bool TestRunnable::index_offset(const Symmetry& s, const IntSequence& nvs)
{
int fails = 0;
int nincr = 0;
_Ttype dummy(0, TensorDimens(s, nvs));
for (typename _Ttype::index run = dummy.begin();
run != dummy.end(); ++run, nincr++) {
typename _Ttype::index run2(&dummy, run.getCoor());
if (! (run == run2))
fails++;
}
printf("\tnumber of columns = %d\n",dummy.ncols());
printf("\tnumber of increments = %d\n",nincr);
printf("\tnumber of failures = %d\n",fails);
return fails == 0;
}
bool TestRunnable::fold_unfold(const FTensor* folded)
{
UTensor* unfolded = &(folded->unfold());
FTensor* folded2 = &(unfolded->fold());
folded2->add(-1.0, *folded);
double normInf = folded2->getNormInf();
double norm1 = folded2->getNorm1();
printf("\tfolded size: (%d, %d)\n",folded->nrows(), folded->ncols());
printf("\tunfolded size: (%d, %d)\n",unfolded->nrows(), unfolded->ncols());
printf("\tdifference normInf: %8.4g\n", normInf);
printf("\tdifference norm1: %8.4g\n", norm1);
delete folded;
delete unfolded;
delete folded2;
return normInf < 1.0e-15;
}
bool TestRunnable::dense_prod(const Symmetry& bsym, const IntSequence& bnvs,
int hdim, int hnv, int rows)
{
Factory f;
FGSContainer* cont =
f.makeCont<FGSTensor,FGSContainer>(hnv, bnvs, bsym.dimen()-hdim+1);
FGSTensor* fh =
f.make<FGSTensor>(rows, Symmetry(hdim), IntSequence(1, hnv));
UGSTensor uh(*fh);
FGSTensor fb(rows, TensorDimens(bsym, bnvs));
fb.getData().zeros();
clock_t s1 = clock();
cont->multAndAdd(uh, fb);
clock_t s2 = clock();
UGSContainer ucont(*cont);
clock_t s3 = clock();
UGSTensor ub(rows, fb.getDims());
ub.getData().zeros();
clock_t s4 = clock();
ucont.multAndAdd(uh, ub);
clock_t s5 = clock();
UGSTensor btmp(fb);
btmp.add(-1, ub);
double norm = btmp.getData().getMax();
double norm1 = btmp.getNorm1();
double normInf = btmp.getNormInf();
printf("\ttime for folded product: %8.4g\n",
((double)(s2-s1))/CLOCKS_PER_SEC);
printf("\ttime for unfolded product: %8.4g\n",
((double)(s5-s4))/CLOCKS_PER_SEC);
printf("\ttime for container convert: %8.4g\n",
((double)(s3-s2))/CLOCKS_PER_SEC);
printf("\tunfolded difference normMax: %10.6g\n", norm);
printf("\tunfolded difference norm1: %10.6g\n", norm1);
printf("\tunfolded difference normInf: %10.6g\n", normInf);
delete cont;
delete fh;
return norm < 1.e-13;
}
bool TestRunnable::folded_monomial(int ng, int nx, int ny, int nu, int dim)
{
clock_t gen_time = clock();
DenseDerivGenerator gen(ng, nx, ny, nu, 5, 0.3, dim);
gen_time = clock()-gen_time;
printf("\ttime for monom generation: %8.4g\n",
((double)gen_time)/CLOCKS_PER_SEC);
IntSequence nvs(2); nvs[0] = ny; nvs[1] = nu;
double maxnorm = 0;
for (int ydim = 0; ydim <= dim; ydim++) {
Symmetry s(ydim, dim-ydim);
printf("\tSymmetry: ");s.print();
FGSTensor res(ng, TensorDimens(s, nvs));
res.getData().zeros();
clock_t stime = clock();
for (int d = 1; d <= dim; d++) {
gen.xcont->multAndAdd(*(gen.ts[d-1]), res);
}
stime = clock() - stime;
printf("\t\ttime for symmetry: %8.4g\n",
((double)stime)/CLOCKS_PER_SEC);
const FGSTensor* mres = gen.rcont->get(s);
res.add(-1.0, *mres);
double normtmp = res.getData().getMax();
printf("\t\terror normMax: %10.6g\n", normtmp);
if (normtmp > maxnorm)
maxnorm = normtmp;
}
return maxnorm < 1.0e-10;
}
bool TestRunnable::unfolded_monomial(int ng, int nx, int ny, int nu, int dim)
{
clock_t gen_time = clock();
DenseDerivGenerator gen(ng, nx, ny, nu, 5, 0.3, dim);
gen_time = clock()-gen_time;
printf("\ttime for monom generation: %8.4g\n",
((double)gen_time)/CLOCKS_PER_SEC);
clock_t u_time = clock();
gen.unfold();
u_time = clock() - u_time;
printf("\ttime for monom unfolding: %8.4g\n",
((double)u_time)/CLOCKS_PER_SEC);
IntSequence nvs(2); nvs[0] = ny; nvs[1] = nu;
double maxnorm = 0;
for (int ydim = 0; ydim <= dim; ydim++) {
Symmetry s(ydim, dim-ydim);
printf("\tSymmetry: ");s.print();
UGSTensor res(ng, TensorDimens(s, nvs));
res.getData().zeros();
clock_t stime = clock();
for (int d = 1; d <= dim; d++) {
gen.uxcont->multAndAdd(*(gen.uts[d-1]), res);
}
stime = clock() - stime;
printf("\t\ttime for symmetry: %8.4g\n",
((double)stime)/CLOCKS_PER_SEC);
const FGSTensor* mres = gen.rcont->get(s);
FGSTensor foldres(res);
foldres.add(-1.0, *mres);
double normtmp = foldres.getData().getMax();
printf("\t\terror normMax: %10.6g\n", normtmp);
if (normtmp > maxnorm)
maxnorm = normtmp;
}
return maxnorm < 1.0e-10;
}
bool TestRunnable::fold_zcont(int nf, int ny, int nu, int nup, int nbigg,
int ng, int dim)
{
clock_t gen_time = clock();
SparseDerivGenerator dg(nf, ny, nu, nup, nbigg, ng,
5, 0.55, dim);
gen_time = clock()-gen_time;
for (int d = 1; d <= dim; d++) {
printf("\tfill of dim=%d tensor: %3.2f %%\n",
d, 100*dg.ts[d-1]->getFillFactor());
}
printf("\ttime for monom generation: %8.4g\n",
((double)gen_time)/CLOCKS_PER_SEC);
IntSequence nvs(4);
nvs[0] = ny; nvs[1] = nu; nvs[2] = nup; nvs[3] = 1;
double maxnorm = 0.0;
// form ZContainer
FoldedZContainer zc(dg.bigg, nbigg, dg.g, ng, ny, nu);
for (int d = 2; d <= dim; d++) {
SymmetrySet ss(d, 4);
for (symiterator si(ss); !si.isEnd(); ++si) {
printf("\tSymmetry: ");(*si).print();
FGSTensor res(nf, TensorDimens(*si, nvs));
res.getData().zeros();
clock_t stime = clock();
for (int l = 1; l <= (*si).dimen(); l++) {
zc.multAndAdd(*(dg.ts[l-1]), res);
}
stime = clock() - stime;
printf("\t\ttime for symmetry: %8.4g\n",
((double)stime)/CLOCKS_PER_SEC);
const FGSTensor* mres = dg.rcont->get(*si);
res.add(-1.0, *mres);
double normtmp = res.getData().getMax();
printf("\t\terror normMax: %10.6g\n", normtmp);
if (normtmp > maxnorm)
maxnorm = normtmp;
}
}
return maxnorm < 1.0e-10;
}
bool TestRunnable::unfold_zcont(int nf, int ny, int nu, int nup, int nbigg,
int ng, int dim)
{
clock_t gen_time = clock();
SparseDerivGenerator dg(nf, ny, nu, nup, nbigg, ng,
5, 0.55, dim);
gen_time = clock()-gen_time;
for (int d = 1; d <= dim; d++) {
printf("\tfill of dim=%d tensor: %3.2f %%\n",
d, 100*dg.ts[d-1]->getFillFactor());
}
printf("\ttime for monom generation: %8.4g\n",
((double)gen_time)/CLOCKS_PER_SEC);
clock_t con_time = clock();
UGSContainer uG_cont(*(dg.bigg));
UGSContainer ug_cont(*(dg.g));
con_time = clock()-con_time;
printf("\ttime for container unfold: %8.4g\n",
((double)con_time)/CLOCKS_PER_SEC);
IntSequence nvs(4);
nvs[0] = ny; nvs[1] = nu; nvs[2] = nup; nvs[3] = 1;
double maxnorm = 0.0;
// form ZContainer
UnfoldedZContainer zc(&uG_cont, nbigg, &ug_cont, ng, ny, nu);
for (int d = 2; d <= dim; d++) {
SymmetrySet ss(d, 4);
for (symiterator si(ss); !si.isEnd(); ++si) {
printf("\tSymmetry: ");(*si).print();
UGSTensor res(nf, TensorDimens(*si, nvs));
res.getData().zeros();
clock_t stime = clock();
for (int l = 1; l <= (*si).dimen(); l++) {
zc.multAndAdd(*(dg.ts[l-1]), res);
}
stime = clock() - stime;
printf("\t\ttime for symmetry: %8.4g\n",
((double)stime)/CLOCKS_PER_SEC);
FGSTensor fold_res(res);
const FGSTensor* mres = dg.rcont->get(*si);
fold_res.add(-1.0, *mres);
double normtmp = fold_res.getData().getMax();
printf("\t\terror normMax: %10.6g\n", normtmp);
if (normtmp > maxnorm)
maxnorm = normtmp;
}
}
return maxnorm < 1.0e-10;
}
bool TestRunnable::folded_contraction(int r, int nv, int dim)
{
Factory fact;
Vector* x = fact.makeVector(nv);
FFSTensor* forig = fact.make<FFSTensor>(r, nv, dim);
FFSTensor* f = new FFSTensor(*forig);
clock_t ctime = clock();
for (int d = dim-1; d > 0; d--) {
FFSTensor* fnew = new FFSTensor(*f, ConstVector(*x));
delete f;
f = fnew;
}
ctime = clock() - ctime;
Vector res(forig->nrows());
res.zeros();
f->multaVec(res, *x);
UFSTensor u(*forig);
clock_t utime = clock();
URSingleTensor ux(*x, dim);
Vector v(u.nrows());
v.zeros();
u.multaVec(v, ux.getData());
utime = clock() - utime;
v.add(-1.0, res);
printf("\ttime for folded contraction: %8.4g\n",
((double)ctime)/CLOCKS_PER_SEC);
printf("\ttime for unfolded power: %8.4g\n",
((double)utime)/CLOCKS_PER_SEC);
printf("\terror normMax: %10.6g\n", v.getMax());
printf("\terror norm1: %10.6g\n", v.getNorm1());
delete f;
delete x;
return (v.getMax() < 1.e-10);
}
bool TestRunnable::unfolded_contraction(int r, int nv, int dim)
{
Factory fact;
Vector* x = fact.makeVector(nv);
FFSTensor* forig = fact.make<FFSTensor>(r, nv, dim);
UFSTensor uorig(*forig);
delete forig;
UFSTensor* u = new UFSTensor(uorig);
clock_t ctime = clock();
for (int d = dim-1; d > 0; d--) {
UFSTensor* unew = new UFSTensor(*u, ConstVector(*x));
delete u;
u = unew;
}
ctime = clock() - ctime;
Vector res(uorig.nrows());
res.zeros();
u->multaVec(res, *x);
clock_t utime = clock();
URSingleTensor ux(*x, dim);
Vector v(uorig.nrows());
v.zeros();
uorig.multaVec(v, ux.getData());
utime = clock() - utime;
v.add(-1.0, res);
printf("\ttime for unfolded contraction: %8.4g\n",
((double)ctime)/CLOCKS_PER_SEC);
printf("\ttime for unfolded power: %8.4g\n",
((double)utime)/CLOCKS_PER_SEC);
printf("\terror normMax: %10.6g\n", v.getMax());
printf("\terror norm1: %10.6g\n", v.getNorm1());
delete u;
delete x;
return (v.getMax() < 1.e-10);
}
bool TestRunnable::poly_eval(int r, int nv, int maxdim)
{
Factory fact;
Vector* x = fact.makeVector(nv);
Vector out_ft(r); out_ft.zeros();
Vector out_fh(r); out_fh.zeros();
Vector out_ut(r); out_ut.zeros();
Vector out_uh(r); out_uh.zeros();
UTensorPolynomial* up;
{
FTensorPolynomial* fp = fact.makePoly<FFSTensor, FTensorPolynomial>(r, nv, maxdim);
clock_t ft_cl = clock();
fp->evalTrad(out_ft, *x);
ft_cl = clock() - ft_cl;
printf("\ttime for folded power eval: %8.4g\n",
((double)ft_cl)/CLOCKS_PER_SEC);
clock_t fh_cl = clock();
fp->evalHorner(out_fh, *x);
fh_cl = clock() - fh_cl;
printf("\ttime for folded horner eval: %8.4g\n",
((double)fh_cl)/CLOCKS_PER_SEC);
up = new UTensorPolynomial(*fp);
delete fp;
}
clock_t ut_cl = clock();
up->evalTrad(out_ut, *x);
ut_cl = clock() - ut_cl;
printf("\ttime for unfolded power eval: %8.4g\n",
((double)ut_cl)/CLOCKS_PER_SEC);
clock_t uh_cl = clock();
up->evalHorner(out_uh, *x);
uh_cl = clock() - uh_cl;
printf("\ttime for unfolded horner eval: %8.4g\n",
((double)uh_cl)/CLOCKS_PER_SEC);
out_ft.add(-1.0, out_ut);
double max_ft = out_ft.getMax();
out_fh.add(-1.0, out_ut);
double max_fh = out_fh.getMax();
out_uh.add(-1.0, out_ut);
double max_uh = out_uh.getMax();
printf("\tfolded power error norm max: %10.6g\n", max_ft);
printf("\tfolded horner error norm max: %10.6g\n", max_fh);
printf("\tunfolded horner error norm max: %10.6g\n", max_uh);
delete up;
delete x;
return (max_ft+max_fh+max_uh < 1.0e-10);
}
/****************************************************/
/* definition of TestRunnable subclasses */
/****************************************************/
class SmallIndexForwardFold : public TestRunnable {
public:
SmallIndexForwardFold()
: TestRunnable("small index forward for fold (44)(222)", 5, 4) {}
bool run() const
{
Symmetry s(2,3);
IntSequence nvs(2); nvs[0] = 4; nvs[1] = 2;
return index_forward<FGSTensor>(s, nvs);
}
};
class SmallIndexForwardUnfold : public TestRunnable {
public:
SmallIndexForwardUnfold()
: TestRunnable("small index forward for unfold (44)(222)", 5, 4) {}
bool run() const
{
Symmetry s(2,3);
IntSequence nvs(2); nvs[0] = 4; nvs[1] = 2;
return index_forward<UGSTensor>(s, nvs);
}
};
class IndexForwardFold : public TestRunnable {
public:
IndexForwardFold()
: TestRunnable("index forward for fold (55)(222)(22)", 7, 5) {}
bool run() const
{
Symmetry s(2,3,2);
IntSequence nvs(3); nvs[0] = 5; nvs[1] = 2; nvs[2] = 2;
return index_forward<FGSTensor>(s, nvs);
}
};
class IndexForwardUnfold : public TestRunnable {
public:
IndexForwardUnfold()
: TestRunnable("index forward for unfold (55)(222)(22)", 7, 5) {}
bool run() const
{
Symmetry s(2,3,2);
IntSequence nvs(3); nvs[0] = 5; nvs[1] = 2; nvs[2] = 2;
return index_forward<UGSTensor>(s, nvs);
}
};
class SmallIndexBackwardFold : public TestRunnable {
public:
SmallIndexBackwardFold()
: TestRunnable("small index backward for fold (3)(3)(222)", 5, 3) {}
bool run() const
{
Symmetry s(1,1,3);
IntSequence nvs(3); nvs[0] = 3; nvs[1] = 3; nvs[2] = 2;
return index_backward<FGSTensor>(s, nvs);
}
};
class IndexBackwardFold : public TestRunnable {
public:
IndexBackwardFold()
: TestRunnable("index backward for fold (44)(222)(44)", 7, 4) {}
bool run() const
{
Symmetry s(2,3,2);
IntSequence nvs(3); nvs[0] = 4; nvs[1] = 2; nvs[2] = 4;
return index_backward<FGSTensor>(s, nvs);
}
};
class SmallIndexBackwardUnfold : public TestRunnable {
public:
SmallIndexBackwardUnfold()
: TestRunnable("small index backward for unfold (3)(3)(222)", 5, 3) {}
bool run() const
{
Symmetry s(1,1,3);
IntSequence nvs(3); nvs[0] = 3; nvs[1] = 3; nvs[2] = 2;
return index_backward<UGSTensor>(s, nvs);
}
};
class IndexBackwardUnfold : public TestRunnable {
public:
IndexBackwardUnfold()
: TestRunnable("index backward for unfold (44)(222)(44)", 7, 4) {}
bool run() const
{
Symmetry s(2,3,2);
IntSequence nvs(3); nvs[0] = 4; nvs[1] = 2; nvs[2] = 4;
return index_backward<UGSTensor>(s, nvs);
}
};
class SmallIndexOffsetFold : public TestRunnable {
public:
SmallIndexOffsetFold()
: TestRunnable("small index offset for fold (44)(222)", 5, 4) {}
bool run() const
{
Symmetry s(2,3);
IntSequence nvs(2); nvs[0] = 4; nvs[1] = 2;
return index_offset<FGSTensor>(s, nvs);
}
};
class SmallIndexOffsetUnfold : public TestRunnable {
public:
SmallIndexOffsetUnfold()
: TestRunnable("small index offset for unfold (44)(222)", 5, 4) {}
bool run() const
{
Symmetry s(2,3);
IntSequence nvs(2); nvs[0] = 4; nvs[1] = 2;
return index_offset<UGSTensor>(s, nvs);
}
};
class IndexOffsetFold : public TestRunnable {
public:
IndexOffsetFold()
: TestRunnable("index offset for fold (55)(222)(22)", 5, 5) {}
bool run() const
{
Symmetry s(2,3,2);
IntSequence nvs(3); nvs[0] = 5; nvs[1] = 2; nvs[2] = 2;
return index_offset<FGSTensor>(s, nvs);
}
};
class IndexOffsetUnfold : public TestRunnable {
public:
IndexOffsetUnfold()
: TestRunnable("index offset for unfold (55)(222)(22)", 7, 5) {}
bool run() const
{
Symmetry s(2,3,2);
IntSequence nvs(3); nvs[0] = 5; nvs[1] = 2; nvs[2] = 2;
return index_offset<UGSTensor>(s, nvs);
}
};
class SmallFoldUnfoldFS : public TestRunnable {
public:
SmallFoldUnfoldFS()
: TestRunnable("small fold-unfold for full symmetry (444)", 3, 4) {}
bool run() const
{
return fs_fold_unfold(5, 4, 3);
}
};
class SmallFoldUnfoldGS : public TestRunnable {
public:
SmallFoldUnfoldGS()
: TestRunnable("small fold-unfold for gen symmetry (3)(33)(22)", 5, 3) {}
bool run() const
{
Symmetry s(1,2,2);
IntSequence nvs(3); nvs[0] = 3; nvs[1] = 3; nvs[2] = 2;
return gs_fold_unfold(5, s, nvs);
}
};
class FoldUnfoldFS : public TestRunnable {
public:
FoldUnfoldFS()
: TestRunnable("fold-unfold for full symmetry (9999)", 4, 9) {}
bool run() const
{
return fs_fold_unfold(5, 9, 4);
}
};
class FoldUnfoldGS : public TestRunnable {
public:
FoldUnfoldGS()
: TestRunnable("fold-unfold for gen symmetry (66)(2)(66)", 5, 6) {}
bool run() const
{
Symmetry s(2,1,2);
IntSequence nvs(3); nvs[0] = 6; nvs[1] = 2; nvs[2] = 6;
return gs_fold_unfold(5, s, nvs);
}
};
class SmallFoldUnfoldR : public TestRunnable {
public:
SmallFoldUnfoldR()
: TestRunnable("small fold-unfold for row full symmetry (333)", 3, 3) {}
bool run() const
{
return r_fold_unfold(5, 3, 3);
}
};
class FoldUnfoldR : public TestRunnable {
public:
FoldUnfoldR()
: TestRunnable("fold-unfold for row full symmetry (66666)", 5, 6) {}
bool run() const
{
return r_fold_unfold(5, 6, 5);
}
};
class SmallDenseProd : public TestRunnable {
public:
SmallDenseProd()
: TestRunnable("small dense prod bsym=1-2,nvs=3-2,h=2-3,r=2",3,3) {}
bool run() const
{
IntSequence bnvs(2); bnvs[0]=3; bnvs[1]=2;
return dense_prod(Symmetry(1,2), bnvs, 2, 3, 2);
}
};
class DenseProd : public TestRunnable {
public:
DenseProd()
: TestRunnable("dense prod bsym=2-3,nvs=10-7,h=3-15,r=10",5,15) {}
bool run() const
{
IntSequence bnvs(2); bnvs[0]=10; bnvs[1]=7;
return dense_prod(Symmetry(2,3), bnvs, 3, 15, 10);
}
};
class BigDenseProd : public TestRunnable {
public:
BigDenseProd()
: TestRunnable("dense prod bsym=3-2,nvs=13-11,h=3-20,r=20",6,20) {}
bool run() const
{
IntSequence bnvs(2); bnvs[0]=13; bnvs[1]=11;
return dense_prod(Symmetry(3,2), bnvs, 3, 20, 20);
}
};
class SmallFoldedMonomial : public TestRunnable {
public:
SmallFoldedMonomial()
: TestRunnable("folded vrs. monoms (g,x,y,u)=(10,4,5,3), dim=4", 4, 8) {}
bool run() const
{
return folded_monomial(10, 4, 5, 3, 4);
}
};
class FoldedMonomial : public TestRunnable {
public:
FoldedMonomial()
: TestRunnable("folded vrs. monoms (g,x,y,u)=(20,12,10,5), dim=4", 4, 15) {}
bool run() const
{
return folded_monomial(20, 12, 10, 5, 4);
}
};
class SmallUnfoldedMonomial : public TestRunnable {
public:
SmallUnfoldedMonomial()
: TestRunnable("unfolded vrs. monoms (g,x,y,u)=(10,4,5,3), dim=4", 4, 8) {}
bool run() const
{
return unfolded_monomial(10, 4, 5, 3, 4);
}
};
class UnfoldedMonomial : public TestRunnable {
public:
UnfoldedMonomial()
: TestRunnable("unfolded vrs. monoms (g,x,y,u)=(20,12,10,5), dim=4", 4, 15) {}
bool run() const
{
return unfolded_monomial(20, 12, 10, 5, 4);
}
};
class FoldedContractionSmall : public TestRunnable {
public:
FoldedContractionSmall()
: TestRunnable("folded contraction small (r=5, nv=4, dim=3)", 3, 4) {}
bool run() const
{
return folded_contraction(5, 4, 3);
}
};
class FoldedContractionBig : public TestRunnable {
public:
FoldedContractionBig()
: TestRunnable("folded contraction big (r=20, nv=12, dim=5)", 5, 12) {}
bool run() const
{
return folded_contraction(20, 12, 5);
}
};
class UnfoldedContractionSmall : public TestRunnable {
public:
UnfoldedContractionSmall()
: TestRunnable("unfolded contraction small (r=5, nv=4, dim=3)", 3, 4) {}
bool run() const
{
return unfolded_contraction(5, 4, 3);
}
};
class UnfoldedContractionBig : public TestRunnable {
public:
UnfoldedContractionBig()
: TestRunnable("unfolded contraction big (r=20, nv=12, dim=5)", 5, 12) {}
bool run() const
{
return unfolded_contraction(20, 12, 5);
}
};
class PolyEvalSmall : public TestRunnable {
public:
PolyEvalSmall()
: TestRunnable("polynomial evaluation small (r=4, nv=5, maxdim=4)", 4, 5) {}
bool run() const
{
return poly_eval(4, 5, 4);
}
};
class PolyEvalBig : public TestRunnable {
public:
PolyEvalBig()
: TestRunnable("polynomial evaluation big (r=244, nv=97, maxdim=2)", 2, 97) {}
bool run() const
{
return poly_eval(244, 97, 2);
}
};
class FoldZContSmall : public TestRunnable {
public:
FoldZContSmall()
: TestRunnable("folded Z container (r=3,ny=2,nu=2,nup=1,G=2,g=2,dim=3)",
3, 8) {}
bool run() const
{
return fold_zcont(3, 2, 2, 1, 2, 2, 3);
}
};
class FoldZCont : public TestRunnable {
public:
FoldZCont()
: TestRunnable("folded Z container (r=13,ny=5,nu=7,nup=4,G=6,g=7,dim=4)",
4, 25) {}
bool run() const
{
return fold_zcont(13, 5, 7, 4, 6, 7, 4);
}
};
class UnfoldZContSmall : public TestRunnable {
public:
UnfoldZContSmall()
: TestRunnable("unfolded Z container (r=3,ny=2,nu=2,nup=1,G=2,g=2,dim=3)",
3, 8) {}
bool run() const
{
return unfold_zcont(3, 2, 2, 1, 2, 2, 3);
}
};
class UnfoldZCont : public TestRunnable {
public:
UnfoldZCont()
: TestRunnable("unfolded Z container (r=13,ny=5,nu=7,nup=4,G=6,g=7,dim=4",
4, 25) {}
bool run() const
{
return unfold_zcont(13, 5, 7, 4, 6, 7, 4);
}
};
int main()
{
TestRunnable* all_tests[50];
// fill in vector of all tests
int num_tests = 0;
all_tests[num_tests++] = new SmallIndexForwardFold();
all_tests[num_tests++] = new SmallIndexForwardUnfold();
all_tests[num_tests++] = new IndexForwardFold();
all_tests[num_tests++] = new IndexForwardUnfold();
all_tests[num_tests++] = new SmallIndexBackwardFold();
all_tests[num_tests++] = new IndexBackwardFold();
all_tests[num_tests++] = new SmallIndexBackwardUnfold();
all_tests[num_tests++] = new IndexBackwardUnfold();
all_tests[num_tests++] = new SmallIndexOffsetFold();
all_tests[num_tests++] = new SmallIndexOffsetUnfold();
all_tests[num_tests++] = new IndexOffsetFold();
all_tests[num_tests++] = new IndexOffsetUnfold();
all_tests[num_tests++] = new SmallFoldUnfoldFS();
all_tests[num_tests++] = new SmallFoldUnfoldGS();
all_tests[num_tests++] = new FoldUnfoldFS();
all_tests[num_tests++] = new FoldUnfoldGS();
all_tests[num_tests++] = new SmallFoldUnfoldR();
all_tests[num_tests++] = new FoldUnfoldR();
all_tests[num_tests++] = new SmallDenseProd();
all_tests[num_tests++] = new DenseProd();
all_tests[num_tests++] = new BigDenseProd();
all_tests[num_tests++] = new SmallFoldedMonomial();
all_tests[num_tests++] = new FoldedMonomial();
all_tests[num_tests++] = new SmallUnfoldedMonomial();
all_tests[num_tests++] = new UnfoldedMonomial();
all_tests[num_tests++] = new FoldedContractionSmall();
all_tests[num_tests++] = new FoldedContractionBig();
all_tests[num_tests++] = new UnfoldedContractionSmall();
all_tests[num_tests++] = new UnfoldedContractionBig();
all_tests[num_tests++] = new PolyEvalSmall();
all_tests[num_tests++] = new PolyEvalBig();
all_tests[num_tests++] = new FoldZContSmall();
all_tests[num_tests++] = new FoldZCont();
all_tests[num_tests++] = new UnfoldZContSmall();
all_tests[num_tests++] = new UnfoldZCont();
// find maximum dimension and maximum nvar
int dmax=0;
int nvmax = 0;
for (int i = 0; i < num_tests; i++) {
if (dmax < all_tests[i]->dim)
dmax = all_tests[i]->dim;
if (nvmax < all_tests[i]->nvar)
nvmax = all_tests[i]->nvar;
}
tls.init(dmax, nvmax); // initialize library
// launch the tests
int success = 0;
for (int i = 0; i < num_tests; i++) {
try {
if (all_tests[i]->test())
success++;
} catch (const TLException& e) {
printf("Caugth TL exception in <%s>:\n", all_tests[i]->getName());
e.print();
} catch (SylvException& e) {
printf("Caught Sylv exception in <%s>:\n", all_tests[i]->getName());
e.printMessage();
}
}
printf("There were %d tests that failed out of %d tests run.\n",
num_tests - success, num_tests);
// destroy
for (int i = 0; i < num_tests; i++) {
delete all_tests[i];
}
return 0;
}
|