1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
|
#include "pascal_triangle.h"
#include <cstdio>
using namespace ogu;
PascalTriangle ptriang;
void PascalRow::setFromPrevious(const PascalRow& prev)
{
k = prev.k + 1;
clear();
prolong(prev);
}
/** This prolongs the PascalRow. If it is empty, we set the first item
* to k+1, which is noverk(k+1,k) which is the second item in the real
* pascal row, which starts from noverk(k,k)=1. Then we calculate
* other items from the provided row which must be the one with k-1.*/
void PascalRow::prolong(const PascalRow& prev)
{
if (size() == 0)
push_back(k+1);
int last = back();
for (unsigned int i = size(); i < prev.size(); i++) {
last += prev[i];
push_back(last);
}
}
void PascalRow::prolongFirst(int n)
{
// todo: check n = 1;
for (int i = (int)size()+2; i <= n; i++)
push_back(i);
}
void PascalRow::print() const
{
printf("k=%d\n",k);
for (unsigned int i = 0; i < size(); i++)
printf("%d ",operator[](i));
printf("\n");
}
int PascalTriangle::max_n() const
{
return (int)(tr[0].size()+1);
}
int PascalTriangle::max_k() const
{
return (int)tr.size();
}
void PascalTriangle::ensure(int n, int k)
{
// add along n
if (n > max_n()) {
tr[0].prolongFirst(n);
for (int i = 2; i <= max_k(); i++)
tr[i-1].prolong(tr[i-2]);
}
if (k > max_k()) {
for (int i = max_k()+1; i <= k; i++) {
PascalRow r;
tr.push_back(r);
tr.back().setFromPrevious(tr[i-2]);
}
}
}
int PascalTriangle::noverk(int n, int k)
{
// todo: rais if out of bounds
if (n-k < k)
k = n-k;
if (k == 0)
return 1;
ensure(n, k);
return (tr[k-1])[n-1-k];
}
void PascalTriangle::print() const
{
for (unsigned int i = 0; i < tr.size(); i++)
tr[i].print();
}
|