1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
function [z, endo_names, endo_names_tex, steady_state, i_var, oo_] = annualized_shock_decomposition(oo_, M_, options_, i_var, t0, t1, realtime_, vintage_, steady_state, q2a, cumfix)
% function oo_ = annualized_shock_decomposition(oo_,t0,options_.nobs);
% Computes annualized shocks contribution to a simulated trajectory. The fields set are
% oo_.annualized_shock_decomposition, oo_.annualized_realtime_shock_decomposition,
% oo_.annualized_realtime_conditional_shock_decomposition and oo_.annualized_realtime_forecast_shock_decomposition.
% Subfields are arrays n_var by nshock+2 by nperiods. The
% first nshock columns store the respective shock contributions, column n+1
% stores the role of the initial conditions, while column n+2 stores the
% value of the smoothed variables. Both the variables and shocks are stored
% in the order of endo_names and M_.exo_names, respectively.
%
% INPUTS
% oo_: [structure] Storage of results
% M_: [structure] Storage of model
% opts: [structure] options for shock decomp
% i_var: [array] index of vars
% t0: [integer] first period
% t1: [integer] last period
% realtime_: [integer]
% vintage_: [integer]
% steady_state: [array] steady state value of quarterly (log-) level vars
% q2a: [structure] info on q2a
%
% OUTPUTS
% z: [matrix] shock decomp to plot
% endo_names: [char] updated var names
% endo_names_tex: [char] updated TeX var names
% steady_state: [array] updated stady state of vars
% i_var: [integer array] updated var indices to plot
% oo_: [structure] Storage of results
%
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
opts = options_.plot_shock_decomp;
nvar = length(i_var);
GYTREND0 = q2a.GYTREND0;
var_type = q2a.type;
islog = q2a.islog;
aux = q2a.aux;
aux0 = aux;
cumfix = q2a.cumfix;
qvintage_ = vintage_;
tpoints = t0:4:t1;
if ~ismember(vintage_,tpoints) && vintage_
ind1=min(find(tpoints>vintage_));
ind2=max(find(tpoints<vintage_));
vintage_=tpoints(ind1);
end
nfrcst = options_.shock_decomp.forecast/4;
%% initialize names
mytype=var_type;
if isfield(q2a,'name')
mytxt = q2a.name;
mytex = q2a.name;
if isfield(q2a,'tex_name')
mytex = q2a.tex_name;
end
if mytype==2
gtxt = ['PHI' mytxt]; % inflation rate
gtex = ['{\pi(' mytex ')}'];
elseif mytype
gtxt = ['G' mytxt]; % inflation rate
gtex = ['{g(' mytex ')}'];
end
if isfield(q2a,'gname')
gtxt = q2a.gname;
end
if isfield(q2a,'tex_gname')
gtex = q2a.tex_gname;
end
mytype=0;
end
for j=1:nvar
if j>1
endo_names = char(endo_names,[deblank(M_.endo_names(i_var(j),:)) '_A']);
endo_names_tex = char(endo_names_tex,['{' deblank(M_.endo_names_tex(i_var(j),:)) '}^A']);
gendo_names = char(gendo_names,[gtxt endo_names(j,:)]);
gendo_names_tex = char(gendo_names_tex,[gtex '(' deblank(endo_names_tex(j,:)) ')']);
else
if nvar==1 && ~mytype
endo_names = mytxt;
endo_names_tex = mytex;
gendo_names = gtxt;
gendo_names_tex = gtex;
else
endo_names = [deblank(M_.endo_names(i_var(j),:)) '_A'];
endo_names_tex = ['{' deblank(M_.endo_names_tex(i_var(j),:)) '}^A'];
gendo_names = [gtxt endo_names(j,:)];
gendo_names_tex = [gtex '(' deblank(endo_names_tex(j,:)) ')'];
end
end
end
if q2a.plot ==1
endo_names = gendo_names;
endo_names_tex = gendo_names_tex;
elseif q2a.plot ~= 2
endo_names = char(endo_names,gendo_names);
endo_names_tex = char(endo_names_tex,gendo_names_tex);
end
% end initialize names
steady_state=steady_state(i_var);
if realtime_==0
% usual shock decomp
if isstruct(oo_)
% z = oo_.shock_decomposition;
myopts=options_;
myopts.plot_shock_decomp.type='qoq';
myopts.plot_shock_decomp.realtime=0;
[z, junk] = plot_shock_decomposition(M_,oo_,myopts,[]);
else
z = oo_;
end
z = z(i_var,:,:);
if isstruct(aux)
if ischar(aux.y)
myopts=options_;
myopts.plot_shock_decomp.type='qoq';
myopts.plot_shock_decomp.realtime=0;
[y_aux, steady_state_aux] = plot_shock_decomposition(M_,oo_,myopts,aux.y);
aux.y=y_aux;
aux.yss=steady_state_aux;
end
end
% endo_names = M_.endo_names(i_var,:);
% endo_names_tex = M_.endo_names_tex(i_var,:);
% make annualized shock decomp
[z, steady_state_a, steady_state_ga] = annualiz(z,t0,q2a,aux,steady_state);
end
% if isstruct(oo_)
% oo_.annualized_shock_decomposition=z;
% end
% realtime
if realtime_ && isstruct(oo_) && isfield(oo_, 'realtime_shock_decomposition')
init=1;
for i=t0:4:t1
yr=floor(i/4);
myopts=options_;
myopts.plot_shock_decomp.type='qoq';
myopts.plot_shock_decomp.realtime=1;
myopts.plot_shock_decomp.vintage=i;
% retrieve quarterly shock decomp
z = plot_shock_decomposition(M_,oo_,myopts,[]);
zdim = size(z);
z = z(i_var,:,:);
if isstruct(aux)
if ischar(aux0.y)
% retrieve quarterly shock decomp for aux variable
[y_aux, steady_state_aux] = plot_shock_decomposition(M_,oo_,myopts,aux0.y);
aux.y=y_aux;
aux.yss=steady_state_aux;
end
end
% make annualized shock decomp
[z, steady_state_a, steady_state_ga] = annualiz(z,t0,q2a,aux,steady_state);
if init==1
oo_.annualized_realtime_shock_decomposition.pool = z;
else
oo_.annualized_realtime_shock_decomposition.pool(:,:,yr) = z(:,:,end-nfrcst);
end
oo_.annualized_realtime_shock_decomposition.(['yr_' int2str(yr)]) = z;
if options_.shock_decomp.forecast
if qvintage_>i-4 && qvintage_<i
myopts.plot_shock_decomp.vintage=qvintage_;
% retrieve quarterly shock decomp
z = plot_shock_decomposition(M_,oo_,myopts,[]);
z(:,:,end+1:zdim(3))=nan; % fill with nan's remaining time points to reach Q4
z = z(i_var,:,:);
if isstruct(aux)
if ischar(aux0.y)
% retrieve quarterly shock decomp for aux variable
[y_aux, steady_state_aux] = plot_shock_decomposition(M_,oo_,myopts,aux0.y);
aux.y=y_aux;
aux.yss=steady_state_aux;
end
end
% make annualized shock decomp
z = annualiz(z,t0,q2a,aux,steady_state);
end
oo_.annualized_realtime_forecast_shock_decomposition.(['yr_' int2str(yr)]) = z(:,:,end-nfrcst:end);
if init>nfrcst
oo_.annualized_realtime_conditional_shock_decomposition.(['yr_' int2str(yr-nfrcst)]) = ...
oo_.annualized_realtime_shock_decomposition.pool(:,:,yr-nfrcst:end) - ...
oo_.annualized_realtime_forecast_shock_decomposition.(['yr_' int2str(yr-nfrcst)]);
% fix others
oo_.annualized_realtime_conditional_shock_decomposition.(['yr_' int2str(yr-nfrcst)])(:,end-1,:) = ...
oo_.annualized_realtime_conditional_shock_decomposition.(['yr_' int2str(yr-nfrcst)])(:,end-1,:) + ...
oo_.annualized_realtime_forecast_shock_decomposition.(['yr_' int2str(yr-nfrcst)])(:,end,:);
% fix total
oo_.annualized_realtime_conditional_shock_decomposition.(['yr_' int2str(yr-nfrcst)])(:,end,:) = ...
oo_.annualized_realtime_shock_decomposition.pool(:,end,yr-nfrcst:end);
if i==t1
for my_forecast_=(nfrcst-1):-1:1
oo_.annualized_realtime_conditional_shock_decomposition.(['yr_' int2str(yr-my_forecast_)]) = ...
oo_.annualized_realtime_shock_decomposition.pool(:,:,yr-my_forecast_:yr) - ...
oo_.annualized_realtime_forecast_shock_decomposition.(['yr_' int2str(yr-my_forecast_)])(:,:,1:my_forecast_+1);
oo_.annualized_realtime_conditional_shock_decomposition.(['yr_' int2str(yr-my_forecast_)])(:,end-1,:) = ...
oo_.annualized_realtime_conditional_shock_decomposition.(['yr_' int2str(yr-my_forecast_)])(:,end-1,:) + ...
oo_.annualized_realtime_forecast_shock_decomposition.(['yr_' int2str(yr-my_forecast_)])(:,end,1:my_forecast_+1);
oo_.annualized_realtime_conditional_shock_decomposition.(['yr_' int2str(yr-my_forecast_)])(:,end,:) = ...
oo_.annualized_realtime_shock_decomposition.pool(:,end,yr-my_forecast_:yr);
end
end
end
end
% ztmp=oo_.realtime_shock_decomposition.pool(:,:,21:29)-oo_.realtime_forecast_shock_decomposition.time_21;
init=init+1;
end
switch realtime_
case 0
z = oo_.annualized_shock_decomposition;
case 1 % realtime
if vintage_
z = oo_.annualized_realtime_shock_decomposition.(['yr_' int2str(floor(vintage_/4))]);
else
z = oo_.annualized_realtime_shock_decomposition.pool;
end
case 2 % conditional
if vintage_
z = oo_.annualized_realtime_conditional_shock_decomposition.(['yr_' int2str(floor(vintage_/4))]);
else
error();
end
case 3 % forecast
if vintage_
z = oo_.annualized_realtime_forecast_shock_decomposition.(['yr_' int2str(floor(vintage_/4))]);
else
error()
end
end
end
if q2a.plot ==0
i_var=1:2*nvar;
steady_state = [steady_state_a;steady_state_ga];
else
i_var=1:nvar;
if q2a.plot ==1
steady_state = steady_state_ga;
else
steady_state = steady_state_a;
end
end
return
function [z, steady_state_a, steady_state_ga] = annualiz(z,t0,q2a,aux,steady_state)
GYTREND0 = q2a.GYTREND0;
var_type = q2a.type;
islog = q2a.islog;
cumfix = q2a.cumfix;
if isstruct(aux)
yaux=aux.y;
end
[nvar , nterms, junk] = size(z);
for j=1:nvar
for k =1:nterms
ztmp = squeeze(z(j,k,min((t0-3):-4:1):end));
if isstruct(aux)
aux.y = squeeze(yaux(j,k,min((t0-3):-4:1):end));
end
[za(j,k,:), steady_state_a(j,1), gza(j,k,:), steady_state_ga(j,1)] = ...
quarterly2annual(ztmp,steady_state(j),GYTREND0,var_type,islog,aux);
end
ztmp=squeeze(za(j,:,:));
if cumfix==0
zscale = sum(ztmp(1:end-1,:))./ztmp(end,:);
ztmp(1:end-1,:) = ztmp(1:end-1,:)./repmat(zscale,[nterms-1,1]);
else
zres = ztmp(end,:)-sum(ztmp(1:end-1,:));
ztmp(1:end-1,:) = ztmp(1:end-1,:) + repmat(zres,[nterms-1 1])/(nterms-1);
end
gztmp=squeeze(gza(j,:,:));
if cumfix==0
gscale = sum(gztmp(1:end-1,:))./ gztmp(end,:);
gztmp(1:end-1,:) = gztmp(1:end-1,:)./repmat(gscale,[nterms-1,1]);
else
gres = gztmp(end,:) - sum(gztmp(1:end-1,:));
gztmp(1:end-1,:) = gztmp(1:end-1,:) + repmat(gres,[nterms-1 1])/(nterms-1);
end
za(j,:,:) = ztmp;
gza(j,:,:) = gztmp;
end
if q2a.plot ==1
z=gza;
elseif q2a.plot == 2
z=za;
else
z=cat(1,za,gza);
end
|