File: compute_moments_varendo.m

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (182 lines) | stat: -rw-r--r-- 7,312 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
function oo_ = compute_moments_varendo(type,options_,M_,oo_,var_list_)
% Computes the second order moments (autocorrelation function, covariance
% matrix and variance decomposition) distributions for all the endogenous variables selected in
% var_list_. The results are saved in oo_
%
% INPUTS:
%   type            [string]       'posterior' or 'prior'
%   options_        [structure]    Dynare structure.
%   M_              [structure]    Dynare structure (related to model definition).
%   oo_             [structure]    Dynare structure (results).
%   var_list_       [string]       Array of string with endogenous variable names.
%
% OUTPUTS
%   oo_             [structure]    Dynare structure (results).
%
% SPECIAL REQUIREMENTS
%   none

% Copyright (C) 2008-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.


fprintf('Estimation::compute_moments_varendo: I''m computing endogenous moments (this may take a while)... ');

if strcmpi(type,'posterior')
    posterior = 1;
    if nargin==4
        var_list_ = char(options_.varobs);
    end
elseif strcmpi(type,'prior')
    posterior = 0;
    if nargin==4
        var_list_ = options_.prior_analysis_endo_var_list;
        if isempty(var_list_)
            options_.prior_analysis_var_list = char(options_.varobs);
        end
    end
else
    error('compute_moments_varendo:: Unknown type!')
end

NumberOfEndogenousVariables = rows(var_list_);
NumberOfExogenousVariables = M_.exo_nbr;
NumberOfLags = options_.ar;
NoDecomposition = options_.nodecomposition;
if isfield(options_,'conditional_variance_decomposition')
    Steps = options_.conditional_variance_decomposition;
else
    Steps = 0;
end

if options_.TeX
    var_list_tex='';
    for var_iter=1:size(var_list_,1)
        var_list_tex=strvcat(var_list_tex,M_.endo_names_tex(strmatch(var_list_(var_iter,:),M_.endo_names,'exact'),:));
    end
end

% COVARIANCE MATRIX.
if posterior
    for i=1:NumberOfEndogenousVariables
        for j=i:NumberOfEndogenousVariables
            oo_ = posterior_analysis('variance',var_list_(i,:),var_list_(j,:),[],options_,M_,oo_);
        end
    end
else
    for i=1:NumberOfEndogenousVariables
        for j=i:NumberOfEndogenousVariables
            oo_ = prior_analysis('variance',var_list_(i,:),var_list_(j,:),[],options_,M_,oo_);
        end
    end
end
% CORRELATION FUNCTION.
if posterior
    for h=NumberOfLags:-1:1
        for i=1:NumberOfEndogenousVariables
            for j=1:NumberOfEndogenousVariables
                oo_ = posterior_analysis('correlation',var_list_(i,:),var_list_(j,:),h,options_,M_,oo_);
            end
        end
    end
else
    for h=NumberOfLags:-1:1
        for i=1:NumberOfEndogenousVariables
            for j=1:NumberOfEndogenousVariables
                oo_ = prior_analysis('correlation',var_list_(i,:),var_list_(j,:),h,options_,M_,oo_);
            end
        end
    end
end
% VARIANCE DECOMPOSITION.
if M_.exo_nbr > 1
    if ~NoDecomposition
        temp=NaN(NumberOfEndogenousVariables,NumberOfExogenousVariables);
        if posterior
            for i=1:NumberOfEndogenousVariables
                for j=1:NumberOfExogenousVariables
                    oo_ = posterior_analysis('decomposition',var_list_(i,:),M_.exo_names(j,:),[],options_,M_,oo_);
                    temp(i,j)=oo_.PosteriorTheoreticalMoments.dsge.VarianceDecomposition.Mean.(deblank(var_list_(i,:))).(deblank(M_.exo_names(j,:)));
                end
            end
            title='Posterior mean variance decomposition (in percent)';
        else
            for i=1:NumberOfEndogenousVariables
                for j=1:NumberOfExogenousVariables
                    oo_ = prior_analysis('decomposition',var_list_(i,:),M_.exo_names(j,:),[],options_,M_,oo_);
                    temp(i,j)=oo_.PriorTheoreticalMoments.dsge.VarianceDecomposition.Mean.(deblank(var_list_(i,:))).(deblank(M_.exo_names(j,:)));
                end
            end
            title='Prior mean variance decomposition (in percent)';
        end
        title=add_filter_subtitle(title,options_);
        headers = M_.exo_names;
        headers(M_.exo_names_orig_ord,:) = headers;
        headers = char(' ',headers);
        lh = size(deblank(var_list_),2)+2;
        dyntable(options_,title,headers,deblank(var_list_),100* ...
                 temp,lh,8,2);
        if options_.TeX
            headers=M_.exo_names_tex;
            headers = char(' ',headers);
            labels = deblank(var_list_tex);
            lh = size(labels,2)+2;
            dyn_latex_table(M_,options_,title,'dsge_post_mean_var_decomp_uncond',headers,labels,100*temp,lh,8,2);
        end
        skipline();
    end
    % CONDITIONAL VARIANCE DECOMPOSITION.
    if Steps
        temp=NaN(NumberOfEndogenousVariables,NumberOfExogenousVariables,length(Steps));
        if posterior
            for i=1:NumberOfEndogenousVariables
                for j=1:NumberOfExogenousVariables
                    oo_ = posterior_analysis('conditional decomposition',i,M_.exo_names(j,:),Steps,options_,M_,oo_);
                    temp(i,j,:)=oo_.PosteriorTheoreticalMoments.dsge.ConditionalVarianceDecomposition.Mean.(deblank(var_list_(i,:))).(deblank(M_.exo_names(j,:)));
                end
            end
            title='Posterior mean conditional variance decomposition (in percent)';
        else
            for i=1:NumberOfEndogenousVariables
                for j=1:NumberOfExogenousVariables
                    oo_ = prior_analysis('conditional decomposition',var_list_(i,:),M_.exo_names(j,:),Steps,options_,M_,oo_);
                    temp(i,j,:)=oo_.PriorTheoreticalMoments.dsge.ConditionalVarianceDecomposition.Mean.(deblank(var_list_(i,:))).(deblank(M_.exo_names(j,:)));
                end
            end
            title='Prior mean conditional variance decomposition (in percent)';
        end
        for step_iter=1:length(Steps)
            title_print=[title, ' Period ' int2str(Steps(step_iter))];
            headers = M_.exo_names;
            headers(M_.exo_names_orig_ord,:) = headers;
            headers = char(' ',headers);
            lh = size(deblank(var_list_),2)+2;
            dyntable(options_,title_print,headers,deblank(var_list_),100* ...
                     temp(:,:,step_iter),lh,8,2);
            if options_.TeX
                headers=M_.exo_names_tex;
                headers = char(' ',headers);
                labels = deblank(var_list_tex);
                lh = size(labels,2)+2;
                dyn_latex_table(M_,options_,title_print,['dsge_post_mean_var_decomp_cond_h',int2str(Steps(step_iter))],headers,labels,100*temp(:,:,step_iter),lh,8,2);
            end
        end
        skipline();
    end
end

fprintf(' Done!\n');