1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
function [raftery_lewis] = raftery_lewis(runs,q,r,s)
% function raftery_lewis = raftery_lewis(runs,q,r,s)
% Computes the convergence diagnostics of Raftery and Lewis (1992), i.e. the
% number of draws needed in MCMC to estimate the posterior cdf of the q-quantile
% within an accuracy r with probability s
%
% Inputs:
% - draws [n_draws by n_var] double matrix of draws from the sampler
% - q [scalar] quantile of the quantity of interest
% - r [scalar] level of desired precision
% - s [scalar] probability associated with r
%
% Output:
% raftery_lewis [structure] containing the fields:
% - M_burn [n_draws by 1] number of draws required for burn-in
% - N_prec [n_draws by 1] number of draws required to achieve desired precision r
% - k_thin [n_draws by 1] thinning required to get 1st order MC
% - k_ind [n_draws by 1] thinning required to get independence
% - I_stat [n_draws by 1] I-statistic of Raftery/Lewis (1992b)
% measures increase in required
% iterations due to dependence in chain
% - N_min [scalar] # draws if the chain is white noise
% - N_total [n_draws by 1] nburn + nprec
%
% ---------------------------------------------------------------------
% NOTES: Example values of q, r, s:
% 0.025, 0.005, 0.95 (for a long-tailed distribution)
% 0.025, 0.0125, 0.95 (for a short-tailed distribution);
%
% - The result is quite sensitive to r, being proportional to the
% inverse of r^2.
% - For epsilon (closeness of probabilities to equilibrium values),
% Raftery/Lewis use 0.001 and argue that the results
% are quite robust to changes in this value
%
% ---------------------------------------------------------------------
% REFERENCES:
% Raftery, Adrien E./Lewis, Steven (1992a): "How many iterations in the Gibbs sampler?"
% in: Bernardo/Berger/Dawid/Smith (eds.): Bayesian Statistics, Vol. 4, Clarendon Press: Oxford,
% pp. 763-773.
% Raftery, Adrien E./Lewis, Steven (1992b): "Comment: One long run with diagnostics:
% Implementation strategies for Markov chain Monte Carlo." Statistical Science,
% 7(4), pp. 493-497.
%
% ----------------------------------------------------
% Copyright (C) 2016 Benjamin Born and Johannes Pfeifer
% Copyright (C) 2016-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
[n_runs, n_vars] = size(runs);
raftery_lewis.M_burn=NaN(n_vars,1);
raftery_lewis.N_prec=NaN(n_vars,1);
raftery_lewis.k_thin=NaN(n_vars,1);
raftery_lewis.k_ind=NaN(n_vars,1);
raftery_lewis.I_stat=NaN(n_vars,1);
raftery_lewis.N_total=NaN(n_vars,1);
thinned_chain = zeros(n_runs,1);
%quantities that can be precomputed as they are independent of variable
Phi = norminv((s+1)/2); %note the missing ^{-1} at the Phi in equation top page 5, see RL (1995)
raftery_lewis.N_min = fix(Phi^2*(1-q)*q/r^2+1);
for nv = 1:n_vars % big loop over variables
if q > 0 && q < 1
work = (runs(:,nv) <= quantile(runs(:,nv),q));
else
error('Quantile must be between 0 and 1');
end
k_thin_current_var = 1;
bic = 1;
epss = 0.001;
% Find thinning factor for which first-order Markov Chain is preferred to second-order one
while(bic > 0)
thinned_chain=work(1:k_thin_current_var:n_runs,1);
[g2, bic] = first_vs_second_order_MC_test(thinned_chain);
k_thin_current_var = k_thin_current_var+1;
end
k_thin_current_var = k_thin_current_var-1; %undo last step
%compute transition probabilities
transition_matrix = zeros(2,2);
for i1 = 2:size(thinned_chain,1)
transition_matrix(thinned_chain(i1-1)+1,thinned_chain(i1)+1) = transition_matrix(thinned_chain(i1-1)+1,thinned_chain(i1)+1)+1;
end
alpha = transition_matrix(1,2)/(transition_matrix(1,1)+transition_matrix(1,2)); %prob of going from 1 to 2
beta = transition_matrix(2,1)/(transition_matrix(2,1)+transition_matrix(2,2)); %prob of going from 2 to 1
kmind=k_thin_current_var;
[g2, bic]=independence_chain_test(thinned_chain);
while(bic > 0)
thinned_chain=work(1:kmind:n_runs,1);
[g2, bic] = independence_chain_test(thinned_chain);
kmind = kmind+1;
end
m_star = log((alpha + beta)*epss/max(alpha,beta))/log(abs(1 - alpha - beta)); %equation bottom page 4
raftery_lewis.M_burn(nv) = fix((m_star+1)*k_thin_current_var);
n_star = (2 - (alpha + beta))*alpha*beta*(Phi^2)/((alpha + beta)^3 * r^2); %equation top page 5
raftery_lewis.N_prec(nv) = fix(n_star+1)*k_thin_current_var;
raftery_lewis.I_stat(nv) = (raftery_lewis.M_burn(nv) + raftery_lewis.N_prec(nv))/raftery_lewis.N_min;
raftery_lewis.k_ind(nv) = max(fix(raftery_lewis.I_stat(nv)+1),kmind);
raftery_lewis.k_thin(nv) = k_thin_current_var;
raftery_lewis.N_total(nv)= raftery_lewis.M_burn(nv)+raftery_lewis.N_prec(nv);
end
end
function [g2, bic] = first_vs_second_order_MC_test(d)
%conducts a test of first vs. second order Markov Chain via BIC criterion
n_obs=size(d,1);
g2 = 0;
tran=zeros(2,2,2);
for t_iter=3:n_obs % count state transitions
tran(d(t_iter-2,1)+1,d(t_iter-1,1)+1,d(t_iter,1)+1)=tran(d(t_iter-2,1)+1,d(t_iter-1,1)+1,d(t_iter,1)+1)+1;
end
% Compute the log likelihood ratio statistic for second-order MC vs first-order MC. G2 statistic of Bishop, Fienberg and Holland (1975)
for ind_1 = 1:2
for ind_2 = 1:2
for ind_3 = 1:2
if tran(ind_1,ind_2,ind_3) ~= 0
fitted = (tran(ind_1,ind_2,1) + tran(ind_1,ind_2,2))*(tran(1,ind_2,ind_3) + tran(2,ind_2,ind_3))/...
(tran(1,ind_2,1) + tran(1,ind_2,2) + tran(2,ind_2,1) + tran(2,ind_2,2));
focus = tran(ind_1,ind_2,ind_3);
g2 = g2 + log(focus/fitted)*focus;
end
end % end of for i3
end % end of for i2
end % end of for i1
g2 = g2*2;
bic = g2 - log(n_obs-2)*2;
end
function [g2, bic] = independence_chain_test(d)
%conducts a test of independence Chain via BIC criterion
n_obs=size(d,1);
trans = zeros(2,2);
for ind_1 = 2:n_obs
trans(d(ind_1-1)+1,d(ind_1)+1)=trans(d(ind_1-1)+1,d(ind_1)+1)+1;
end
dcm1 = n_obs - 1;
g2 = 0;
% Compute the log likelihood ratio statistic for second-order MC vs first-order MC. G2 statistic of Bishop, Fienberg and Holland (1975)
for ind_1 = 1:2
for ind_2 = 1:2
if trans(ind_1,ind_2) ~= 0
fitted = ((trans(ind_1,1) + trans(ind_1,2))*(trans(1,ind_2) + trans(2,ind_2)))/dcm1;
focus = trans(ind_1,ind_2);
g2 = g2 + log(focus/fitted)*focus;
end
end
end
g2 = g2*2;
bic = g2 - log(dcm1);
end
|