1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
function [H,G,retcode]=discretionary_policy_engine(AAlag,AA0,AAlead,BB,bigw,instr_id,beta,solve_maxit,discretion_tol,qz_criterium,H00,verbose)
% Solves the discretionary problem for a model of the form:
%
% Loss=E_0 sum_{t=0}^{\infty} beta^t [y_t'*W*y+x_t'*Q*x_t]
% subject to
% AAlag*yy_{t-1}+AA0*yy_t+AAlead*yy_{t+1}+BB*e=0
%
% with W the weight on the variables in vector y_t.
%
% The solution takes the form
% y_t=H*y_{t-1}+G*e_t
% where H=[H1;F1] and G=[H2;F2].
%
% We use the Dennis (2007, Macroeconomic Dynamics) algorithm and so we need
% to re-write the model in the form
% A0*y_t=A1*y_{t-1}+A2*y_{t+1}+A3*x_t+A4*x_{t+1}+A5*e_t, with W the
% weight on the y_t vector and Q the weight on the x_t vector of
% instruments.
%
% Inputs:
% AAlag [double] matrix of coefficients on lagged
% variables
% AA0 [double] matrix of coefficients on
% contemporaneous variables
% AAlead [double] matrix of coefficients on
% leaded variables
% BB [double] matrix of coefficients on
% shocks
% bigw [double] matrix of coefficients on variables in
% loss/objective function; stacks [W and Q]
% instr_id [double] location vector of the instruments in the yy_t vector.
% beta [scalar] planner discount factor
% solve_maxit [scalar] maximum number of iterations
% discretion_tol [scalar] convergence criterion for solution
% qz_criterium [scalar] tolerance for QZ decomposition
% H00
% verbose [scalar] dummy to control verbosity
%
% Outputs:
% H [double] (endo_nbr*endo_nbr) solution matrix for endogenous
% variables, stacks [H1 and H1]
% G [double] (endo_nbr*exo_nbr) solution matrix for shocks, stacks [H2 and F2]
%
% retcode [scalar] return code
%
% Algorithm:
% Dennis, Richard (2007): Optimal policy in rational expectations models: new solution algorithms,
% Macroeconomic Dynamics, 11, 3155.
% Copyright (C) 2007-2018 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
if nargin<12
verbose=0;
if nargin<11
H00=[];
if nargin<10
qz_criterium=1.000001;
if nargin<9
discretion_tol=sqrt(eps);
if nargin<8
solve_maxit=3000;
if nargin<7
beta=.99;
if nargin<6
error([mfilename,':: Insufficient number of input arguments'])
elseif nargin>12
error([mfilename,':: Number of input arguments cannot exceed 12'])
end
end
end
end
end
end
end
[A0,A1,A2,A3,A4,A5,W,Q,endo_nbr,exo_nbr,aux,endo_augm_id]=GetDennisMatrices(AAlag,AA0,AAlead,BB,bigw,instr_id);
% aux is a logical index of the instruments which appear with lags in the
% model. Their location in the state vector is instr_id(aux);
% endo_augm_id is index (not logical) of locations of the augmented vector
% of non-instrumental variables
AuxiliaryVariables_nbr=sum(aux);
H0=zeros(endo_nbr+AuxiliaryVariables_nbr);
if ~isempty(H00)
H0(1:endo_nbr,1:endo_nbr)=H00;
clear H00
end
H10=H0(endo_augm_id,endo_augm_id);
F10=H0(instr_id,endo_augm_id);
iter=0;
H1=H10;
F1=F10;
%solve equations (20) and (22) via fixed point iteration
while 1
iter=iter+1;
P=SylvesterDoubling(W+beta*F1'*Q*F1,beta*H1',H1,discretion_tol,solve_maxit);
if any(any(isnan(P))) || any(any(isinf(P)))
P=SylvesterHessenbergSchur(W+beta*F1'*Q*F1,beta*H1',H1);
if any(any(isnan(P))) || any(any(isinf(P)))
retcode=2;
return
end
end
D=A0-A2*H1-A4*F1; %equation (20)
Dinv=inv(D);
A3DPD=A3'*Dinv'*P*Dinv;
F1=-(Q+A3DPD*A3)\(A3DPD*A1); %component of (26)
H1=Dinv*(A1+A3*F1); %component of (27)
[rcode,NQ]=CheckConvergence([H1;F1]-[H10;F10],iter,solve_maxit,discretion_tol);
if rcode
break
else
if verbose
disp(NQ)
end
end
H10=H1;
F10=F1;
end
%check if successful
retcode = 0;
switch rcode
case 3 % nan
retcode=63;
retcode(2)=10000;
if verbose
disp([mfilename,':: NaN elements in the solution'])
end
case 2% maxiter
retcode = 61;
if verbose
disp([mfilename,':: Maximum Number of Iterations reached'])
end
case 1
BadEig=max(abs(eig(H1)))>qz_criterium;
if BadEig
retcode=62;
retcode(2)=100*max(abs(eig(H1)));
if verbose
disp([mfilename,':: Some eigenvalues greater than qz_criterium, Model potentially unstable'])
end
end
end
if retcode(1)
H=[];
G=[];
else
F2=-(Q+A3DPD*A3)\(A3DPD*A5); %equation (29)
H2=Dinv*(A5+A3*F2); %equation (31)
H=zeros(endo_nbr+AuxiliaryVariables_nbr);
G=zeros(endo_nbr+AuxiliaryVariables_nbr,exo_nbr);
H(endo_augm_id,endo_augm_id)=H1;
H(instr_id,endo_augm_id)=F1;
G(endo_augm_id,:)=H2;
G(instr_id,:)=F2;
% Account for auxilliary variables
H(:,instr_id(aux))=H(:,end-(AuxiliaryVariables_nbr-1:-1:0));
H=H(1:endo_nbr,1:endo_nbr);
G=G(1:endo_nbr,:);
end
end
function [rcode,NQ]=CheckConvergence(Q,iter,MaxIter,crit)
NQ=max(max(abs(Q)));% norm(Q); seems too costly
if isnan(NQ)
rcode=3;
elseif iter>MaxIter;
rcode=2;
elseif NQ<crit
rcode=1;
else
rcode=0;
end
end
function [A00,A11,A22,A33,A44,A55,WW,Q,endo_nbr,exo_nbr,aux,endo_augm_id]=GetDennisMatrices(AAlag,AA0,AAlead,BB,bigw,instr_id)
%get the matrices to use the Dennis (2007) algorithm
[eq_nbr,endo_nbr]=size(AAlag);
exo_nbr=size(BB,2);
y=setdiff(1:endo_nbr,instr_id);
instr_nbr=numel(instr_id);
A0=AA0(:,y);
A1=-AAlag(:,y);
A2=-AAlead(:,y);
A3=-AA0(:,instr_id);
A4=-AAlead(:,instr_id);
A5=-BB;
W=bigw(y,y);
Q=bigw(instr_id,instr_id);
% Adjust for possible lags in instruments by creating auxiliary equations
A6=-AAlag(:,instr_id);
aux=any(A6);
AuxiliaryVariables_nbr=sum(aux);
ny=eq_nbr;
m=eq_nbr+AuxiliaryVariables_nbr;
A00=zeros(m);A00(1:ny,1:ny)=A0;A00(ny+1:end,ny+1:end)=eye(AuxiliaryVariables_nbr);
A11=zeros(m);A11(1:ny,1:ny)=A1;A11(1:ny,ny+1:end)=A6(:,aux);
A22=zeros(m);A22(1:ny,1:ny)=A2;
A33=zeros(m,instr_nbr);A33(1:ny,1:end)=A3;A33(ny+1:end,aux)=eye(AuxiliaryVariables_nbr);
A44=zeros(m,instr_nbr);A44(1:ny,1:end)=A4;
A55=zeros(m,exo_nbr);A55(1:ny,1:end)=A5;
WW=zeros(m);WW(1:ny,1:ny)=W;
endo_augm_id=setdiff(1:endo_nbr+AuxiliaryVariables_nbr,instr_id);
end
function v= SylvesterDoubling (d,g,h,tol,maxit)
% DOUBLES Solves a Sylvester equation using doubling
%
% [v,info] = doubles (g,d,h,tol,maxit) uses a doubling algorithm
% to solve the Sylvester equation v = d + g v h
v = d;
for i =1:maxit
vadd = g*v*h;
v = v+vadd;
if norm (vadd,1) <= (tol*norm(v,1))
break
end
g = g*g;
h = h*h;
end
end
function v = SylvesterHessenbergSchur(d,g,h)
%
% DSYLHS Solves a discrete time sylvester equation using the
% Hessenberg-Schur algorithm
%
% v = DSYLHS(g,d,h) computes the matrix v that satisfies the
% discrete time sylvester equation
%
% v = d + g'vh
if size(g,1) >= size(h,1)
[u,gbarp] = hess(g');
[t,hbar] = schur(h);
[vbar] = sylvest_private(gbarp,u'*d*t,hbar,1e-15);
v = u*vbar*t';
else
[u,gbar] = schur(g);
[t,hbarp] = hess(h');
[vbar] = sylvest_private(hbarp,t'*d'*u,gbar,1e-15);
v = u*vbar'*t';
end
end
function v = sylvest_private(g,d,h,tol)
%
% SYLVEST Solves a Sylvester equation
%
% solves the Sylvester equation
% v = d + g v h
% for v where both g and h must be upper block triangular.
% The output info is zero on a successful return.
% The input tol indicates when an element of g or h should be considered
% zero.
[m,n] = size(d);
v = zeros(m,n);
w = eye(m);
i = 1;
temp = [];
%First handle the i = 1 case outside the loop
if i< n
if abs(h(i+1,i)) < tol
v(:,i)= (w - g*h(i,i))\d(:,i);
i = i+1;
else
A = [w-g*h(i,i) (-g*h(i+1,i));...
-g*h(i,i+1) w-g*h(i+1,i+1)];
C = [d(:,i); d(:,i+1)];
X = A\C;
v(:,i) = X(1:m,:);
v(:,i+1) = X(m+1:2*m, :);
i = i+2;
end
end
%Handle the rest of the matrix with the possible exception of i=n
while i<n
b= i-1;
temp = [temp g*v(:,size(temp,2)+1:b)]; %#ok<AGROW>
if abs(h(i+1,i)) < tol
v(:,i) = (w - g*h(i,i))\(d(:,i) + temp*h(1:b,i));
i = i+1;
else
A = [w - g*h(i,i) (-g*h(i+1,i)); ...
-g*h(i,i+1) w - g*h(i+1,i+1)];
C = [d(:,i) + temp*h(1:b,i); ...
d(:,i+1) + temp*h(1:b,i+1)];
X = A\C;
v(:,i) = X(1:m,:);
v(:,i+1) = X(m+1:2*m, :);
i = i+2;
end
end
%Handle the i = n case if i=n was not in a 2-2 block
if i==n
b = i-1;
temp = [temp g*v(:,size(temp,2)+1:b)];
v(:,i) = (w-g*h(i,i))\(d(:,i) + temp*h(1:b,i));
end
end
|