File: disp_th_moments.m

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (176 lines) | stat: -rw-r--r-- 6,879 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
function oo_=disp_th_moments(dr,var_list,M_,options_,oo_)
% Display theoretical moments of variables

% Copyright (C) 2001-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

nodecomposition = options_.nodecomposition;
if options_.one_sided_hp_filter
    error(['disp_th_moments:: theoretical moments incompatible with one-sided HP filter. Use simulated moments instead'])
end
if size(var_list,1) == 0
    var_list = M_.endo_names(1:M_.orig_endo_nbr, :);
end
nvar = size(var_list,1);
ivar=zeros(nvar,1);
for i=1:nvar
    i_tmp = strmatch(var_list(i,:),M_.endo_names,'exact');
    if isempty(i_tmp)
        error (['One of the variable specified does not exist']) ;
    else
        ivar(i) = i_tmp;
    end
end

[oo_.gamma_y,stationary_vars] = th_autocovariances(dr,ivar,M_,options_, nodecomposition);
m = dr.ys(ivar);
non_stationary_vars = setdiff(1:length(ivar),stationary_vars);
m(non_stationary_vars) = NaN;

i1 = find(abs(diag(oo_.gamma_y{1})) > 1e-12);
s2 = diag(oo_.gamma_y{1});
sd = sqrt(s2);
if options_.order == 2 && ~M_.hessian_eq_zero
    m = m+oo_.gamma_y{options_.ar+3};
end

z = [ m sd s2 ];
oo_.mean = m;
oo_.var = oo_.gamma_y{1};

if size(stationary_vars, 1) > 0
    if ~nodecomposition
        oo_.variance_decomposition=100*oo_.gamma_y{options_.ar+2};
    end
    if ~options_.noprint %options_.nomoments == 0
        if options_.order == 2
            title='APPROXIMATED THEORETICAL MOMENTS';
        else
            title='THEORETICAL MOMENTS';
        end
        title=add_filter_subtitle(title,options_);
        headers=char('VARIABLE','MEAN','STD. DEV.','VARIANCE');
        labels = deblank(M_.endo_names(ivar,:));
        lh = size(labels,2)+2;
        dyntable(options_,title,headers,labels,z,lh,11,4);
        if options_.TeX
            labels = deblank(M_.endo_names_tex(ivar,:));
            lh = size(labels,2)+2;
            dyn_latex_table(M_,options_,title,'th_moments',headers,labels,z,lh,11,4);
        end

        if M_.exo_nbr > 1 && ~nodecomposition
            skipline()
            if options_.order == 2
                title='APPROXIMATED VARIANCE DECOMPOSITION (in percent)';
            else
                title='VARIANCE DECOMPOSITION (in percent)';
            end
            title=add_filter_subtitle(title,options_);
            headers = M_.exo_names;
            headers(M_.exo_names_orig_ord,:) = headers;
            headers = char(' ',headers);
            lh = size(deblank(M_.endo_names(ivar(stationary_vars),:)),2)+2;
            dyntable(options_,title,headers,deblank(M_.endo_names(ivar(stationary_vars), ...
                                                              :)),100* ...
                     oo_.gamma_y{options_.ar+2}(stationary_vars,:),lh,8,2);
            if options_.TeX
                headers=M_.exo_names_tex;
                headers = char(' ',headers);
                labels = deblank(M_.endo_names_tex(ivar(stationary_vars),:));
                lh = size(labels,2)+2;
                dyn_latex_table(M_,options_,title,'th_var_decomp_uncond',headers,labels,100*oo_.gamma_y{options_.ar+2}(stationary_vars,:),lh,8,2);
            end
        end
    end

    conditional_variance_steps = options_.conditional_variance_decomposition;
    if length(conditional_variance_steps)
        StateSpaceModel.number_of_state_equations = M_.endo_nbr;
        StateSpaceModel.number_of_state_innovations = M_.exo_nbr;
        StateSpaceModel.sigma_e_is_diagonal = M_.sigma_e_is_diagonal;
        [StateSpaceModel.transition_matrix,StateSpaceModel.impulse_matrix] = kalman_transition_matrix(dr,(1:M_.endo_nbr)',M_.nstatic+(1:M_.nspred)',M_.exo_nbr);
        StateSpaceModel.state_innovations_covariance_matrix = M_.Sigma_e;
        StateSpaceModel.order_var = dr.order_var;
        oo_.conditional_variance_decomposition = conditional_variance_decomposition(StateSpaceModel,conditional_variance_steps,ivar);

        if options_.noprint == 0
            display_conditional_variance_decomposition(oo_.conditional_variance_decomposition,conditional_variance_steps,...
                                                       ivar,M_,options_);
        end
    end
end

if length(i1) == 0
    skipline()
    disp('All endogenous are constant or non stationary, not displaying correlations and auto-correlations')
    skipline()
    return
end

if options_.nocorr == 0 && size(stationary_vars, 1) > 0
    corr=NaN(size(oo_.gamma_y{1}));
    corr(i1,i1) = oo_.gamma_y{1}(i1,i1)./(sd(i1)*sd(i1)');
    if options_.contemporaneous_correlation 
        oo_.contemporaneous_correlation = corr;
    end
    if ~options_.noprint
        skipline()
        if options_.order == 2
            title='APPROXIMATED MATRIX OF CORRELATIONS';
        else
            title='MATRIX OF CORRELATIONS';
        end
        title=add_filter_subtitle(title,options_);
        labels = deblank(M_.endo_names(ivar(i1),:));
        headers = char('Variables',labels);
        lh = size(labels,2)+2;
        dyntable(options_,title,headers,labels,corr(i1,i1),lh,8,4);
        if options_.TeX
            labels = deblank(M_.endo_names_tex(ivar(i1),:));
            headers=char('Variables',labels);
            lh = size(labels,2)+2;
            dyn_latex_table(M_,options_,title,'th_corr_matrix',headers,labels,corr(i1,i1),lh,8,4);
        end
    end
end
if options_.ar > 0 && size(stationary_vars, 1) > 0
    z=[];
    for i=1:options_.ar
        oo_.autocorr{i} = oo_.gamma_y{i+1};
        z(:,i) = diag(oo_.gamma_y{i+1}(i1,i1));
    end
    if ~options_.noprint
        skipline()
        if options_.order == 2
            title='APPROXIMATED COEFFICIENTS OF AUTOCORRELATION';
        else
            title='COEFFICIENTS OF AUTOCORRELATION';
        end
        title=add_filter_subtitle(title,options_);
        labels = deblank(M_.endo_names(ivar(i1),:));
        headers = char('Order ',int2str([1:options_.ar]'));
        lh = size(labels,2)+2;
        dyntable(options_,title,headers,labels,z,lh,8,4);
        if options_.TeX
            labels = deblank(M_.endo_names_tex(ivar(i1),:));
            headers=char('Order ',int2str([1:options_.ar]'));
            lh = size(labels,2)+2;
            dyn_latex_table(M_,options_,title,'th_autocorr_matrix',headers,labels,z,lh,8,4);
        end
    end
end