File: display_conditional_variance_decomposition.m

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (65 lines) | stat: -rw-r--r-- 2,619 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
function display_conditional_variance_decomposition(conditional_decomposition_array,Steps,SubsetOfVariables,M_,options_)
% This function displays the conditional variance decomposition of a given state space model
% for a subset of endogenous variables.
%
% INPUTS
%   conditional_decomposition_array     [matrix]   Output matrix from compute_conditional_variance_decomposition
%   Steps               [integer]     1*h vector of dates.
%   SubsetOfVariables   [integer]     1*q vector of indices.
%   M_                  [structure]   Dynare structure containing the
%                                     Model description
%   options_            [structure]   Dynare structure containing the
%                                     options
% OUTPUTS
%   none
%
% Copyright (C) 2010-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

if options_.order == 2
    skipline()
    title='APPROXIMATED CONDITIONAL VARIANCE DECOMPOSITION (in percent)';
    disp(title)
else
    skipline()
    title='CONDITIONAL VARIANCE DECOMPOSITION (in percent)';
    disp(title)
end

vardec_i = zeros(length(SubsetOfVariables),M_.exo_nbr);

for i=1:length(Steps)
    disp(['Period ' int2str(Steps(i)) ':'])

    for j=1:M_.exo_nbr
        vardec_i(:,j) = 100*conditional_decomposition_array(:, ...
                                                          i,j);
    end
    headers = M_.exo_names;
    headers(M_.exo_names_orig_ord,:) = headers;
    headers = char(' ',headers);
    lh = size(deblank(M_.endo_names(SubsetOfVariables,:)),2)+2;
    dyntable(options_,'',headers,...
             deblank(M_.endo_names(SubsetOfVariables,:)),...
             vardec_i,lh,8,2);
    if options_.TeX
        labels_TeX = deblank(M_.endo_names_tex(SubsetOfVariables,:));
        headers_TeX=char('',deblank(M_.exo_names_tex));
        lh = size(labels_TeX,2)+2;
        dyn_latex_table(M_,options_,[title,'; Period ' int2str(Steps(i))],['th_var_decomp_cond_h',int2str(Steps(i))],headers_TeX,labels_TeX,vardec_i,lh,8,2);
    end
end