1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
function [nvar,vartan,CorrFileNumber] = dsge_simulated_theoretical_correlation(SampleSize,nar,M_,options_,oo_,type)
% function [nvar,vartan,CorrFileNumber] = dsge_simulated_theoretical_correlation(SampleSize,nar,M_,options_,oo_,type)
% This function computes the posterior or prior distribution of the endogenous
% variables' second order moments.
%
% INPUTS
% SampleSize [integer] scalar, number of simulations.
% nar [integer] maximum number of autocorrelations to
% consider
% M_ [structure] Dynare structure describing the model.
% options_ [structure] Dynare structure defining global options
% oo_ [structure] Dynare structure where the results are saved.
% type [string] 'prior' or 'posterior'
%
% OUTPUTS
% nvar [integer] nvar is the number of stationary variables.
% vartan [char] array of characters (with nvar rows).
% CorrFileNumber [integer] scalar, number of prior or posterior data files (for correlation).
% Copyright (C) 2007-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
nodecomposition = 1;
% Get informations about the _posterior_draws files.
if strcmpi(type,'posterior')
DrawsFiles = dir([M_.dname '/metropolis/' M_.fname '_' type '_draws*' ]);
posterior = 1;
elseif strcmpi(type,'prior')
DrawsFiles = dir([M_.dname '/prior/draws/' type '_draws*' ]);
CheckPath('prior/moments',M_.dname);
posterior = 0;
else
disp('dsge_simulated_theoretical_correlation:: Unknown type!');
error()
end
NumberOfDrawsFiles = length(DrawsFiles);
%delete old stale files before creating new ones
if posterior
delete_stale_file([M_.dname '/metropolis/' M_.fname '_PosteriorCorrelations*']);
else
delete_stale_file([M_.dname '/prior/moments/' M_.fname '_PriorCorrelations*']);
end
% Set varlist (vartan)
if ~posterior
if isfield(options_,'varlist')
temp = options_.varlist;
end
options_.varlist = options_.prior_analysis_endo_var_list;
end
[ivar,vartan, options_] = get_variables_list(options_, M_);
if ~posterior
if exist('temp','var')
options_.varlist = temp;
end
end
nvar = length(ivar);
% Set the size of the auto-correlation function to nar.
oldnar = options_.ar;
options_.ar = nar;
% Number of lines in posterior data files.
MaXNumberOfCorrLines = ceil(options_.MaxNumberOfBytes/(nvar*nvar*nar)/8);
if SampleSize<=MaXNumberOfCorrLines
Correlation_array = zeros(SampleSize,nvar,nvar,nar);
NumberOfCorrFiles = 1;
else
Correlation_array = zeros(MaXNumberOfCorrLines,nvar,nvar,nar);
NumberOfLinesInTheLastCorrFile = mod(SampleSize,MaXNumberOfCorrLines);
NumberOfCorrFiles = ceil(SampleSize/MaXNumberOfCorrLines);
end
NumberOfCorrLines = rows(Correlation_array);
CorrFileNumber = 1;
% Compute 2nd order moments and save them in *_[Posterior, Prior]Correlations* files
linea = 0;
for file = 1:NumberOfDrawsFiles
if posterior
load([M_.dname '/metropolis/' DrawsFiles(file).name ]);
else
load([M_.dname '/prior/draws/' DrawsFiles(file).name]);
end
NumberOfDraws = rows(pdraws);
isdrsaved = columns(pdraws)-1;
for linee = 1:NumberOfDraws
linea = linea+1;
if isdrsaved
M_=set_parameters_locally(M_,pdraws{linee,1});% Needed to update the covariance matrix of the state innovations.
dr = pdraws{linee,2};
else
M_=set_parameters_locally(M_,pdraws{linee,1});
[dr,info,M_,options_,oo_] = resol(0,M_,options_,oo_);
end
tmp = th_autocovariances(dr,ivar,M_,options_,nodecomposition);
for i=1:nar
Correlation_array(linea,:,:,i) = tmp{i+1};
end
if linea == NumberOfCorrLines
if posterior
save([ M_.dname '/metropolis/' M_.fname '_PosteriorCorrelations' int2str(CorrFileNumber) '.mat' ],'Correlation_array');
else
save([ M_.dname '/prior/moments/' M_.fname '_PriorCorrelations' int2str(CorrFileNumber) '.mat' ],'Correlation_array');
end
CorrFileNumber = CorrFileNumber + 1;
linea = 0;
test = CorrFileNumber-NumberOfCorrFiles;
if ~test% Prepare the last round...
Correlation_array = zeros(NumberOfLinesInTheLastCorrFile,nvar,nvar,nar);
NumberOfCorrLines = NumberOfLinesInTheLastCorrFile;
CorrFileNumber = CorrFileNumber - 1;
elseif test<0
Correlation_array = zeros(MaXNumberOfCorrLines,nvar,nvar,nar);
else
clear('Correlation_array');
end
end
end
end
options_.ar = oldnar;
|