1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
|
function [dataset_, dataset_info, xparam1, hh, M_, options_, oo_, estim_params_,bayestopt_, bounds] = dynare_estimation_init(var_list_, dname, gsa_flag, M_, options_, oo_, estim_params_, bayestopt_)
% function [dataset_, dataset_info, xparam1, hh, M_, options_, oo_, estim_params_,bayestopt_, bounds] = dynare_estimation_init(var_list_, dname, gsa_flag, M_, options_, oo_, estim_params_, bayestopt_)
% performs initialization tasks before estimation or
% global sensitivity analysis
%
% INPUTS
% var_list_: selected endogenous variables vector
% dname: alternative directory name
% gsa_flag: flag for GSA operation (optional)
% M_: structure storing the model information
% options_: structure storing the options
% oo_: structure storing the results
% estim_params_: structure storing information about estimated
% parameters
% bayestopt_: structure storing information about priors
% OUTPUTS
% dataset_: the dataset after required transformation
% dataset_info: Various informations about the dataset (descriptive statistics and missing observations).
% xparam1: initial value of estimated parameters as returned by
% set_prior() or loaded from mode-file
% hh: hessian matrix at the loaded mode (or empty matrix)
% M_: structure storing the model information
% options_: structure storing the options
% oo_: structure storing the results
% estim_params_: structure storing information about estimated
% parameters
% bayestopt_: structure storing information about priors
% bounds: structure containing prior bounds
%
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 2003-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
hh = [];
xparam1 = [];
if isempty(gsa_flag)
gsa_flag = 0;
else
% Decide if a DSGE or DSGE-VAR has to be estimated.
if ~isempty(strmatch('dsge_prior_weight',M_.param_names))
options_.dsge_var = 1;
end
% Get the list of the endogenous variables for which posterior statistics wil be computed
var_list_ = check_list_of_variables(options_, M_, var_list_);
options_.varlist = var_list_;
end
if options_.dsge_var && options_.presample~=0
error('DSGE-VAR does not support the presample option.')
end
% Test if observed variables are declared.
if ~isfield(options_,'varobs')
error('VAROBS statement is missing!')
end
% Set the number of observed variables.
options_.number_of_observed_variables = length(options_.varobs);
% Check that each declared observed variable is also an endogenous variable.
for i = 1:options_.number_of_observed_variables
id = strmatch(options_.varobs{i}, M_.endo_names, 'exact');
if isempty(id)
error(['Unknown variable (' options_.varobs{i} ')!'])
end
end
% Check that a variable is not declared as observed more than once.
if length(unique(options_.varobs))<length(options_.varobs)
for i = 1:options_.number_of_observed_variables
if length(strmatch(options_.varobs{i},options_.varobs,'exact'))>1
error(['A variable cannot be declared as observed more than once (' options_.varobs{i} ')!'])
end
end
end
% Check the perturbation order (nonlinear filters with third order perturbation, or higher order, are not yet implemented).
if options_.order>2
error(['I cannot estimate a model with a ' int2str(options_.order) ' order approximation of the model!'])
end
% analytical derivation is not yet available for kalman_filter_fast
if options_.analytic_derivation && options_.fast_kalman_filter
error(['estimation option conflict: analytic_derivation isn''t available ' ...
'for fast_kalman_filter'])
end
% fast kalman filter is only available with kalman_algo == 0,1,3
if options_.fast_kalman_filter
if ~ismember(options_.kalman_algo, [0,1,3])
error(['estimation option conflict: fast_kalman_filter is only available ' ...
'with kalman_algo = 0, 1 or 3'])
elseif options_.block
error(['estimation option conflict: fast_kalman_filter is not available ' ...
'with block'])
end
end
% Set options_.lik_init equal to 3 if diffuse filter is used or kalman_algo refers to a diffuse filter algorithm.
if isequal(options_.diffuse_filter,1) || (options_.kalman_algo>2)
if isequal(options_.lik_init,2)
error(['options diffuse_filter, lik_init and/or kalman_algo have contradictory settings'])
else
options_.lik_init = 3;
end
end
options_=select_qz_criterium_value(options_);
% Set options related to filtered variables.
if isequal(options_.filtered_vars,0) && ~isempty(options_.filter_step_ahead)
options_.filtered_vars = 1;
end
if ~isequal(options_.filtered_vars,0) && isempty(options_.filter_step_ahead)
options_.filter_step_ahead = 1;
end
if ~isequal(options_.filtered_vars,0) && isequal(options_.filter_step_ahead,0)
options_.filter_step_ahead = 1;
end
if ~isequal(options_.filter_step_ahead,0)
options_.nk = max(options_.filter_step_ahead);
end
% Set the name of the directory where (intermediary) results will be saved.
if isempty(dname)
M_.dname = M_.fname;
else
M_.dname = dname;
end
% Set priors over the estimated parameters.
if ~isempty(estim_params_) && ~(isfield(estim_params_,'nvx') && (size(estim_params_.var_exo,1)+size(estim_params_.var_endo,1)+size(estim_params_.corrx,1)+size(estim_params_.corrn,1)+size(estim_params_.param_vals,1))==0)
[xparam1,estim_params_,bayestopt_,lb,ub,M_] = set_prior(estim_params_,M_,options_);
end
if ~isempty(bayestopt_) && any(bayestopt_.pshape==0) && any(bayestopt_.pshape~=0)
error('Estimation must be either fully ML or fully Bayesian. Maybe you forgot to specify a prior distribution.')
end
% Check if a _prior_restrictions.m file exists
if exist([M_.fname '_prior_restrictions.m'])
options_.prior_restrictions.status = 1;
options_.prior_restrictions.routine = str2func([M_.fname '_prior_restrictions']);
end
% Check that the provided mode_file is compatible with the current estimation settings.
if ~isempty(estim_params_) && ~(isfield(estim_params_,'nvx') && sum(estim_params_.nvx+estim_params_.nvn+estim_params_.ncx+estim_params_.ncn+estim_params_.np)==0) && ~isempty(options_.mode_file) && ~options_.mh_posterior_mode_estimation
number_of_estimated_parameters = length(xparam1);
mode_file = load(options_.mode_file);
if number_of_estimated_parameters>length(mode_file.xparam1)
% More estimated parameters than parameters in the mode file.
skipline()
disp(['The posterior mode file ' options_.mode_file ' has been generated using another specification of the model or another model!'])
disp(['Your mode file contains estimates for ' int2str(length(mode_file.xparam1)) ' parameters, while you are attempting to estimate ' int2str(number_of_estimated_parameters) ' parameters:'])
md = []; xd = [];
for i=1:number_of_estimated_parameters
id = strmatch(deblank(bayestopt_.name(i,:)),mode_file.parameter_names,'exact');
if isempty(id)
disp(['--> Estimated parameter ' bayestopt_.name{i} ' is not present in the loaded mode file (prior mean will be used, if possible).'])
else
xd = [xd; i];
md = [md; id];
end
end
for i=1:length(mode_file.xparam1)
id = strmatch(mode_file.parameter_names{i},bayestopt_.name,'exact');
if isempty(id)
disp(['--> Parameter ' mode_file.parameter_names{i} ' is not estimated according to the current mod file.'])
end
end
if ~options_.mode_compute
% The posterior mode is not estimated.
error('Please change the mode_file option, the list of estimated parameters or set mode_compute>0.')
else
% The posterior mode is estimated, the Hessian evaluated at the mode is not needed so we set values for the parameters missing in the mode file using the prior mean.
if ~isempty(xd)
xparam1(xd) = mode_file.xparam1(md);
else
error('Please remove the mode_file option.')
end
end
elseif number_of_estimated_parameters<length(mode_file.xparam1)
% Less estimated parameters than parameters in the mode file.
skipline()
disp(['The posterior mode file ' options_.mode_file ' has been generated using another specification of the model or another model!'])
disp(['Your mode file contains estimates for ' int2str(length(mode_file.xparam1)) ' parameters, while you are attempting to estimate only ' int2str(number_of_estimated_parameters) ' parameters:'])
md = []; xd = [];
for i=1:number_of_estimated_parameters
id = strmatch(deblank(bayestopt_.name(i,:)),mode_file.parameter_names,'exact');
if isempty(id)
disp(['--> Estimated parameter ' deblank(bayestopt_.name(i,:)) ' is not present in the loaded mode file (prior mean will be used, if possible).'])
else
xd = [xd; i];
md = [md; id];
end
end
for i=1:length(mode_file.xparam1)
id = strmatch(mode_file.parameter_names{i},bayestopt_.name,'exact');
if isempty(id)
disp(['--> Parameter ' mode_file.parameter_names{i} ' is not estimated according to the current mod file.'])
end
end
if ~options_.mode_compute
% The posterior mode is not estimated. If possible, fix the mode_file.
if isequal(length(xd),number_of_estimated_parameters)
disp('==> Fix mode file (remove unused parameters).')
xparam1 = mode_file.xparam1(md);
if isfield(mode_file,'hh')
hh = mode_file.hh(md,md);
end
else
error('Please change the mode_file option, the list of estimated parameters or set mode_compute>0.')
end
else
% The posterior mode is estimated, the Hessian evaluated at the mode is not needed so we set values for the parameters missing in the mode file using the prior mean.
if ~isempty(xd)
xparam1(xd) = mode_file.xparam1(md);
else
% None of the estimated parameters are present in the mode_file.
error('Please remove the mode_file option.')
end
end
else
% The number of declared estimated parameters match the number of parameters in the mode file.
% Check that the parameters in the mode file and according to the current mod file are identical.
if ~isfield(mode_file,'parameter_names')
disp(['The posterior mode file ' options_.mode_file ' has been generated using an older version of Dynare. It cannot be verified if it matches the present model. Proceed at your own risk.'])
mode_file.parameter_names=deblank(bayestopt_.name); %set names
end
if isequal(mode_file.parameter_names, bayestopt_.name)
xparam1 = mode_file.xparam1;
if isfield(mode_file,'hh')
hh = mode_file.hh;
end
else
skipline()
disp(['The posterior mode file ' options_.mode_file ' has been generated using another specification of the model or another model!'])
% Check if this only an ordering issue or if the missing parameters can be initialized with the prior mean.
md = []; xd = [];
for i=1:number_of_estimated_parameters
id = strmatch(deblank(bayestopt_.name(i,:)), mode_file.parameter_names,'exact');
if isempty(id)
disp(['--> Estimated parameter ' bayestopt_.name{i} ' is not present in the loaded mode file.'])
else
xd = [xd; i];
md = [md; id];
end
end
if ~options_.mode_compute
% The posterior mode is not estimated
if isequal(length(xd), number_of_estimated_parameters)
% This is an ordering issue.
xparam1 = mode_file.xparam1(md);
if isfield(mode_file,'hh')
hh = mode_file.hh(md,md);
end
else
error('Please change the mode_file option, the list of estimated parameters or set mode_compute>0.')
end
else
% The posterior mode is estimated, the Hessian evaluated at the mode is not needed so we set values for the parameters missing in the mode file using the prior mean.
if ~isempty(xd)
xparam1(xd) = mode_file.xparam1(md);
if isfield(mode_file,'hh')
hh(xd,xd) = mode_file.hh(md,md);
end
else
% None of the estimated parameters are present in the mode_file.
error('Please remove the mode_file option.')
end
end
end
end
skipline()
end
%check for calibrated covariances before updating parameters
if ~isempty(estim_params_) && ~(isfield(estim_params_,'nvx') && sum(estim_params_.nvx+estim_params_.nvn+estim_params_.ncx+estim_params_.ncn+estim_params_.np)==0)
estim_params_=check_for_calibrated_covariances(xparam1,estim_params_,M_);
end
%%read out calibration that was set in mod-file and can be used for initialization
xparam1_calib=get_all_parameters(estim_params_,M_); %get calibrated parameters
if ~any(isnan(xparam1_calib)) %all estimated parameters are calibrated
estim_params_.full_calibration_detected=1;
else
estim_params_.full_calibration_detected=0;
end
if options_.use_calibration_initialization %set calibration as starting values
if ~isempty(bayestopt_) && all(bayestopt_.pshape==0) && any(all(isnan([xparam1_calib xparam1]),2))
error('Estimation: When using the use_calibration option with ML, the parameters must be properly initialized.')
else
[xparam1,estim_params_]=do_parameter_initialization(estim_params_,xparam1_calib,xparam1); %get explicitly initialized parameters that have precedence to calibrated values
end
end
if ~isempty(bayestopt_) && all(bayestopt_.pshape==0) && any(isnan(xparam1))
error('ML estimation requires all estimated parameters to be initialized, either in an estimated_params or estimated_params_init-block ')
end
if ~isempty(estim_params_) && ~(all(strcmp(fieldnames(estim_params_),'full_calibration_detected')) || (isfield(estim_params_,'nvx') && sum(estim_params_.nvx+estim_params_.nvn+estim_params_.ncx+estim_params_.ncn+estim_params_.np)==0))
if ~isempty(bayestopt_) && any(bayestopt_.pshape > 0)
% Plot prior densities.
if ~options_.nograph && options_.plot_priors
plot_priors(bayestopt_,M_,estim_params_,options_)
end
% Set prior bounds
bounds = prior_bounds(bayestopt_, options_.prior_trunc);
bounds.lb = max(bounds.lb,lb);
bounds.ub = min(bounds.ub,ub);
else % estimated parameters but no declared priors
% No priors are declared so Dynare will estimate the model by
% maximum likelihood with inequality constraints for the parameters.
options_.mh_replic = 0;% No metropolis.
bounds.lb = lb;
bounds.ub = ub;
end
% Test if initial values of the estimated parameters are all between the prior lower and upper bounds.
if options_.use_calibration_initialization
try
check_prior_bounds(xparam1,bounds,M_,estim_params_,options_,bayestopt_)
catch
e = lasterror();
fprintf('Cannot use parameter values from calibration as they violate the prior bounds.')
rethrow(e);
end
else
check_prior_bounds(xparam1,bounds,M_,estim_params_,options_,bayestopt_)
end
end
if isempty(estim_params_) || all(strcmp(fieldnames(estim_params_),'full_calibration_detected')) || (isfield(estim_params_,'nvx') && sum(estim_params_.nvx+estim_params_.nvn+estim_params_.ncx+estim_params_.ncn+estim_params_.np)==0) % If estim_params_ is empty (e.g. when running the smoother on a calibrated model)
if ~options_.smoother
error('Estimation: the ''estimated_params'' block is mandatory (unless you are running a smoother)')
end
xparam1 = [];
bayestopt_.jscale = [];
bayestopt_.pshape = [];
bayestopt_.name =[];
bayestopt_.p1 = [];
bayestopt_.p2 = [];
bayestopt_.p3 = [];
bayestopt_.p4 = [];
bayestopt_.p5 = [];
bayestopt_.p6 = [];
bayestopt_.p7 = [];
estim_params_.var_exo=[];
estim_params_.var_endo=[];
estim_params_.corrx=[];
estim_params_.corrn=[];
estim_params_.param_vals=[];
estim_params_.nvx = 0;
estim_params_.nvn = 0;
estim_params_.ncx = 0;
estim_params_.ncn = 0;
estim_params_.np = 0;
bounds.lb = [];
bounds.ub = [];
end
% storing prior parameters in results
oo_.prior.mean = bayestopt_.p1;
oo_.prior.mode = bayestopt_.p5;
oo_.prior.variance = diag(bayestopt_.p2.^2);
oo_.prior.hyperparameters.first = bayestopt_.p6;
oo_.prior.hyperparameters.second = bayestopt_.p7;
% Is there a linear trend in the measurement equation?
if ~isfield(options_,'trend_coeffs') % No!
bayestopt_.with_trend = 0;
else% Yes!
bayestopt_.with_trend = 1;
bayestopt_.trend_coeff = {};
for i=1:options_.number_of_observed_variables
if i > length(options_.trend_coeffs)
bayestopt_.trend_coeff{i} = '0';
else
bayestopt_.trend_coeff{i} = options_.trend_coeffs{i};
end
end
end
% Get informations about the variables of the model.
dr = set_state_space(oo_.dr,M_,options_);
oo_.dr = dr;
nstatic = M_.nstatic; % Number of static variables.
npred = M_.nspred; % Number of predetermined variables.
nspred = M_.nspred; % Number of predetermined variables in the state equation.
%% Setting restricted state space (observed + predetermined variables)
% oo_.dr.restrict_var_list: location of union of observed and state variables in decision rules (decision rule order)
% bayestopt_.mfys: position of observables in oo_.dr.ys (declaration order)
% bayestopt_.mf0: position of state variables in restricted state vector (oo_.dr.restrict_var_list)
% bayestopt_.mf1: positions of observed variables in restricted state vector (oo_.dr.restrict_var_list order)
% bayestopt_.mf2: positions of observed variables in decision rules/expanded state vector (decision rule order)
% bayestopt_.smoother_var_list: positions of observed variables and requested smoothed variables in decision rules (decision rule order)
% bayestopt_.smoother_saved_var_list: positions of requested smoothed variables in bayestopt_.smoother_var_list
% bayestopt_.smoother_restrict_columns: positions of states in observed variables and requested smoothed variables in decision rules (decision rule order)
% bayestopt_.smoother_mf: positions of observed variables and requested smoothed variables in bayestopt_.smoother_var_list
var_obs_index_dr = [];
k1 = [];
for i=1:options_.number_of_observed_variables
var_obs_index_dr = [var_obs_index_dr; strmatch(options_.varobs{i},M_.endo_names(dr.order_var,:),'exact')];
k1 = [k1; strmatch(options_.varobs{i},M_.endo_names, 'exact')];
end
k3 = [];
k3p = [];
if options_.selected_variables_only
if options_.forecast > 0 && options_.mh_replic == 0 && ~options_.load_mh_file
fprintf('\nEstimation: The selected_variables_only option is incompatible with classical forecasts. It will be ignored.\n')
k3 = (1:M_.endo_nbr)';
k3p = (1:M_.endo_nbr)';
else
for i=1:size(var_list_,1)
k3 = [k3; strmatch(var_list_(i,:),M_.endo_names(dr.order_var,:), 'exact')];
k3p = [k3; strmatch(var_list_(i,:),M_.endo_names, 'exact')];
end
end
else
k3 = (1:M_.endo_nbr)';
k3p = (1:M_.endo_nbr)';
end
% Define union of observed and state variables
if options_.block == 1
k1 = k1';
[k2, i_posA, i_posB] = union(k1', M_.state_var', 'rows');
% Set restrict_state to postion of observed + state variables in expanded state vector.
oo_.dr.restrict_var_list = [k1(i_posA) M_.state_var(sort(i_posB))];
% set mf0 to positions of state variables in restricted state vector for likelihood computation.
[junk,bayestopt_.mf0] = ismember(M_.state_var',oo_.dr.restrict_var_list);
% Set mf1 to positions of observed variables in restricted state vector for likelihood computation.
[junk,bayestopt_.mf1] = ismember(k1,oo_.dr.restrict_var_list);
% Set mf2 to positions of observed variables in expanded state vector for filtering and smoothing.
bayestopt_.mf2 = var_obs_index_dr;
bayestopt_.mfys = k1;
oo_.dr.restrict_columns = [size(i_posA,1)+(1:size(M_.state_var,2))];
[k2, i_posA, i_posB] = union(k3p, M_.state_var', 'rows');
bayestopt_.smoother_var_list = [k3p(i_posA); M_.state_var(sort(i_posB))'];
[junk,junk,bayestopt_.smoother_saved_var_list] = intersect(k3p,bayestopt_.smoother_var_list(:));
[junk,ic] = intersect(bayestopt_.smoother_var_list,M_.state_var);
bayestopt_.smoother_restrict_columns = ic;
[junk,bayestopt_.smoother_mf] = ismember(k1, bayestopt_.smoother_var_list);
else
% Define union of observed and state variables
k2 = union(var_obs_index_dr,[M_.nstatic+1:M_.nstatic+M_.nspred]', 'rows');
% Set restrict_state to postion of observed + state variables in expanded state vector.
oo_.dr.restrict_var_list = k2;
% set mf0 to positions of state variables in restricted state vector for likelihood computation.
[junk,bayestopt_.mf0] = ismember([M_.nstatic+1:M_.nstatic+M_.nspred]',k2);
% Set mf1 to positions of observed variables in restricted state vector for likelihood computation.
[junk,bayestopt_.mf1] = ismember(var_obs_index_dr,k2);
% Set mf2 to positions of observed variables in expanded state vector for filtering and smoothing.
bayestopt_.mf2 = var_obs_index_dr;
bayestopt_.mfys = k1;
[junk,ic] = intersect(k2,nstatic+(1:npred)');
oo_.dr.restrict_columns = [ic; length(k2)+(1:nspred-npred)'];
bayestopt_.smoother_var_list = union(k2,k3);
[junk,junk,bayestopt_.smoother_saved_var_list] = intersect(k3,bayestopt_.smoother_var_list(:));
[junk,ic] = intersect(bayestopt_.smoother_var_list,nstatic+(1:npred)');
bayestopt_.smoother_restrict_columns = ic;
[junk,bayestopt_.smoother_mf] = ismember(var_obs_index_dr, bayestopt_.smoother_var_list);
end
if options_.analytic_derivation
if options_.lik_init == 3
error('analytic derivation is incompatible with diffuse filter')
end
options_.analytic_derivation = 1;
if ~(exist('sylvester3','file')==2)
dynareroot = strrep(which('dynare'),'dynare.m','');
addpath([dynareroot 'gensylv'])
end
if estim_params_.np
% check if steady state changes param values
M=M_;
M.params(estim_params_.param_vals(:,1)) = xparam1(estim_params_.nvx+estim_params_.ncx+estim_params_.nvn+estim_params_.ncn+1:end); %set parameters
M.params(estim_params_.param_vals(:,1)) = M.params(estim_params_.param_vals(:,1))*1.01; %vary parameters
if options_.diffuse_filter || options_.steadystate.nocheck
steadystate_check_flag = 0;
else
steadystate_check_flag = 1;
end
[tmp1, params] = evaluate_steady_state(oo_.steady_state,M,options_,oo_,steadystate_check_flag);
change_flag=any(find(params-M.params));
if change_flag
skipline()
if any(isnan(params))
disp('After computing the steadystate, the following parameters are still NaN: '),
disp(M.param_names(isnan(params),:))
end
if any(find(params(~isnan(params))-M.params(~isnan(params))))
disp('The steadystate file changed the values for the following parameters: '),
disp(M.param_names(find(params(~isnan(params))-M.params(~isnan(params))),:))
end
disp('The derivatives of jacobian and steady-state will be computed numerically'),
disp('(re-set options_.analytic_derivation_mode= -2)'),
options_.analytic_derivation_mode= -2;
end
end
end
% If jscale isn't specified for an estimated parameter, use global option options_.jscale, set to 0.2, by default.
% Note that check_posterior_sampler_options and mode_compute=6 may overwrite the setting
k = find(isnan(bayestopt_.jscale));
bayestopt_.jscale(k) = options_.mh_jscale;
% Build the dataset
if ~isempty(options_.datafile)
[pathstr,name,ext] = fileparts(options_.datafile);
if strcmp(name,M_.fname)
error('Data-file and mod-file are not allowed to have the same name. Please change the name of the data file.')
end
end
if isnan(options_.first_obs)
options_.first_obs=1;
end
[dataset_, dataset_info, newdatainterfaceflag] = makedataset(options_, options_.dsge_var*options_.dsge_varlag, gsa_flag);
%set options for old interface from the ones for new interface
if ~isempty(dataset_)
options_.nobs = dataset_.nobs;
end
% setting steadystate_check_flag option
if options_.diffuse_filter || options_.steadystate.nocheck
steadystate_check_flag = 0;
else
steadystate_check_flag = 1;
end
% If the steady state of the observed variables is non zero, set noconstant equal 0 ()
M = M_;
nvx = estim_params_.nvx;
ncx = estim_params_.ncx;
nvn = estim_params_.nvn;
ncn = estim_params_.ncn;
if estim_params_.np
M.params(estim_params_.param_vals(:,1)) = xparam1(nvx+ncx+nvn+ncn+1:end);
end
[oo_.steady_state, params,info] = evaluate_steady_state(oo_.steady_state,M,options_,oo_,steadystate_check_flag);
if info(1)
fprintf('\ndynare_estimation_init:: The steady state at the initial parameters cannot be computed.\n')
print_info(info, 0, options_);
end
if (~options_.loglinear && all(abs(oo_.steady_state(bayestopt_.mfys))<1e-9)) || (options_.loglinear && all(abs(log(oo_.steady_state(bayestopt_.mfys)))<1e-9))
options_.noconstant = 1;
else
options_.noconstant = 0;
% If the data are prefiltered then there must not be constants in the
% measurement equation of the DSGE model or in the DSGE-VAR model.
if options_.prefilter
skipline()
disp('You have specified the option "prefilter" to demean your data but the')
disp('steady state of of the observed variables is non zero.')
disp('Either change the measurement equations, by centering the observed')
disp('variables in the model block, or drop the prefiltering.')
error('The option "prefilter" is inconsistent with the non-zero mean measurement equations in the model.')
end
end
%% get the non-zero rows and columns of Sigma_e and H
H_non_zero_rows=find(~all(M_.H==0,1));
H_non_zero_columns=find(~all(M_.H==0,2));
if ~isequal(H_non_zero_rows,H_non_zero_columns')
error('Measurement error matrix not symmetric')
end
if isfield(estim_params_,'nvn_observable_correspondence')
estim_params_.H_entries_to_check_for_positive_definiteness=union(H_non_zero_rows,estim_params_.nvn_observable_correspondence(:,1));
else
estim_params_.H_entries_to_check_for_positive_definiteness=H_non_zero_rows;
end
Sigma_e_non_zero_rows=find(~all(M_.Sigma_e==0,1));
Sigma_e_non_zero_columns=find(~all(M_.Sigma_e==0,2));
if ~isequal(Sigma_e_non_zero_rows,Sigma_e_non_zero_columns')
error('Structual error matrix not symmetric')
end
if isfield(estim_params_,'var_exo') && ~isempty(estim_params_.var_exo)
estim_params_.Sigma_e_entries_to_check_for_positive_definiteness=union(Sigma_e_non_zero_rows,estim_params_.var_exo(:,1));
else
estim_params_.Sigma_e_entries_to_check_for_positive_definiteness=Sigma_e_non_zero_rows;
end
if options_.load_results_after_load_mh
if ~exist([M_.fname '_results.mat'],'file')
fprintf('\ndynare_estimation_init:: You specified the load_results_after_load_mh, but no _results.mat-file\n')
fprintf('dynare_estimation_init:: was found. Results will be recomputed.\n')
options_.load_results_after_load_mh=0;
end
end
if options_.mh_replic || options_.load_mh_file
[current_options, options_] = check_posterior_sampler_options([], options_, bounds);
options_.posterior_sampler_options.current_options = current_options;
end
|