1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
function [nodes,weights] = gauss_legendre_weights_and_nodes(n,a,b)
% Computes the weights and nodes for a Legendre Gaussian quadrature rule.
%@info:
%! @deftypefn {Function File} {@var{nodes}, @var{weights} =} gauss_hermite_weights_and_nodes (@var{n})
%! @anchor{gauss_legendre_weights_and_nodes}
%! @sp 1
%! Computes the weights and nodes for a Legendre Gaussian quadrature rule. designed to approximate integrals
%! on the finite interval (-1,1) of an unweighted smooth function.
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item n
%! Positive integer scalar, number of nodes (order of approximation).
%! @item a
%! Double scalar, lower bound.
%! @item b
%! Double scalar, upper bound.
%! @end table
%! @sp 1
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item nodes
%! n*1 vector of doubles, the nodes (roots of an order n Legendre polynomial)
%! @item weights
%! n*1 vector of doubles, the associated weights.
%! @end table
%! @sp 2
%! @strong{Remarks:}
%! Only the first input argument (the number of nodes) is mandatory. The second and third input arguments
%! are used if a change of variables is necessary (ie if we need nodes over the interval [a,b] instead of
%! of the default interval [-1,1]).
%! @sp 2
%! @strong{This function is called by:}
%! @sp 2
%! @strong{This function calls:}
%! @sp 2
%! @end deftypefn
%@eod:
% Copyright (C) 2012-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR(S) stephane DOT adjemian AT univ DASH lemans DOT fr
bb = sqrt(1./(4-(1./transpose(1:n-1)).^2));
aa = zeros(n,1);
JacobiMatrix = diag(bb,1)+diag(aa)+diag(bb,-1);
[JacobiEigenVectors,JacobiEigenValues] = eig(JacobiMatrix);
[nodes,idx] = sort(diag(JacobiEigenValues));
JacobiEigenVector = JacobiEigenVectors(1,:);
JacobiEigenVector = transpose(JacobiEigenVector(idx));
weights = 2*JacobiEigenVector.^2;
if nargin==3
weights = .5*(b-a)*weights;
nodes = .5*(nodes+1)*(b-a)+a;
end
%@test:1
%$ [n2,w2] = gauss_legendre_weights_and_nodes(2);
%$ [n3,w3] = gauss_legendre_weights_and_nodes(3);
%$ [n4,w4] = gauss_legendre_weights_and_nodes(4);
%$ [n5,w5] = gauss_legendre_weights_and_nodes(5);
%$ [n7,w7] = gauss_legendre_weights_and_nodes(7);
%$
%$
%$ % Expected nodes (taken from Judd (1998, table 7.2)).
%$ e2 = .5773502691; e2 = [-e2; e2];
%$ e3 = .7745966692; e3 = [-e3; 0 ; e3];
%$ e4 = [.8611363115; .3399810435]; e4 = [-e4; flipud(e4)];
%$ e5 = [.9061798459; .5384693101]; e5 = [-e5; 0; flipud(e5)];
%$ e7 = [.9491079123; .7415311855; .4058451513]; e7 = [-e7; 0; flipud(e7)];
%$
%$ % Expected weights (taken from Judd (1998, table 7.2) and http://en.wikipedia.org/wiki/Gaussian_quadrature).
%$ f2 = [1; 1];
%$ f3 = [5; 8; 5]/9;
%$ f4 = [18-sqrt(30); 18+sqrt(30)]; f4 = [f4; flipud(f4)]/36;
%$ f5 = [322-13*sqrt(70); 322+13*sqrt(70)]/900; f5 = [f5; 128/225; flipud(f5)];
%$ f7 = [.1294849661; .2797053914; .3818300505]; f7 = [f7; .4179591836; flipud(f7)];
%$
%$ % Check the results.
%$ t(1) = dassert(e2,n2,1e-9);
%$ t(2) = dassert(e3,n3,1e-9);
%$ t(3) = dassert(e4,n4,1e-9);
%$ t(4) = dassert(e5,n5,1e-9);
%$ t(5) = dassert(e7,n7,1e-9);
%$ t(6) = dassert(w2,f2,1e-9);
%$ t(7) = dassert(w3,f3,1e-9);
%$ t(8) = dassert(w4,f4,1e-9);
%$ t(9) = dassert(w5,f5,1e-9);
%$ t(10) = dassert(w7,f7,1e-9);
%$ T = all(t);
%@eof:1
%@test:2
%$ nmax = 50;
%$
%$ t = zeros(nmax,1);
%$
%$ for i=1:nmax
%$ [n,w] = gauss_legendre_weights_and_nodes(i);
%$ t(i) = dassert(sum(w),2,1e-12);
%$ end
%$
%$ T = all(t);
%@eof:2
%@test:3
%$ [n,w] = gauss_legendre_weights_and_nodes(9,pi,2*pi);
%$ % Check that the
%$ t(1) = all(n>pi);
%$ t(2) = all(n<2*pi);
%$ t(3) = dassert(sum(w),pi,1e-12);
%$ T = all(t);
%@eof:3
|