1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
function [JJ, H, gam, gp, dA, dOm, dYss] = getJJ(A, B, estim_params_, M_,oo_,options_,kronflag,indx,indexo,mf,nlags,useautocorr)
% function [JJ, H, gam, gp, dA, dOm, dYss] = getJJ(A, B, estim_params_, M_,oo_,options_,kronflag,indx,indexo,mf,nlags,useautocorr)
% computes derivatives of 1st and 2nd order moments of observables with
% respect to estimated parameters
%
% Inputs:
% A: Transition matrix of lagged states from Kalman filter
% B: Matrix in state transition equation mapping shocks today to
% states today
% M_: structure storing the model information
% oo_: structure storing the results
% options_: structure storing the options
% kronflag: Indicator whether to rely on Kronecker products (1) or
% not (-1 or -2)
% indx: Index of estimated parameters in M_.params
% indexo: Index of estimated standard deviations in M_.exo_names
% mf: Index of observed variables
% nlags: Number of lags to consider for covariances and
% correlations
% useautocorr: Indicator on whether to use correlations (1) instead of
% covariances (0)
%
% Outputs:
% JJ: Jacobian of 1st and 2nd order moments of observables, i.e. dgam/dTHETA
% (see below for definition of gam)
% H: dTAU/dTHETA: Jacobian of TAU, vectorized form of
% linearized reduced form state space model, given ys [steady state],
% A [transition matrix], B [matrix of shocks], Sigma [covariance of shocks]
% TAU = [ys; vec(A); dyn_vech(B*Sigma*B')].
% gam: vector of theoretical moments of observed variables mf [JJ is the Jacobian of gam].
% gam = [ys(mf); dyn_vech(GAM{1}); vec(GAM{j+1})]; for j=1:ar and where
% GAM is the first output of th_autocovariances
% gp: Jacobian of linear rational expectation matrices [i.e.
% Jacobian of dynamic model] with respect to estimated
% structural parameters only (indx)
% dA: [endo_nbr by endo_nbr by (indx+indexo)] Jacobian of transition matrix A
% dOm: Jacobian of Omega = (B*Sigma*B')
% dYss Jacobian of steady state with respect to estimated structural parameters only (indx)
% Copyright (C) 2010-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
if nargin<8 || isempty(indx)
% indx = [1:M_.param_nbr];
end
if nargin<9 || isempty(indexo)
indexo = [];
end
if nargin<11 || isempty(nlags)
nlags=3;
end
if nargin<12 || isempty(useautocorr)
useautocorr=0;
end
% if useautocorr,
warning('off','MATLAB:divideByZero')
% end
if kronflag == -1
fun = 'thet2tau';
params0 = M_.params;
para0 = get_all_parameters(estim_params_, M_);
JJ = fjaco(fun,para0,estim_params_,M_, oo_, indx,indexo,1,mf,nlags,useautocorr);
M_.params = params0;
params0 = M_.params;
H = fjaco(fun,para0,estim_params_,M_, oo_, indx,indexo,0,mf,nlags,useautocorr);
M_.params = params0;
params0 = M_.params;
gp = fjaco(fun,para0,estim_params_,M_, oo_, indx,indexo,-1);
M_.params = params0;
offset = length(para0)-length(indx);
gp = gp(:,offset+1:end);
dYss = H(1:M_.endo_nbr,offset+1:end);
dA = reshape(H(M_.orig_endo_nbr+[1:numel(A)],:),[size(A),size(H,2)]);
dOm = dA*0;
for j=1:size(H,2)
dOm(:,:,j) = dyn_unvech(H(M_.endo_nbr+numel(A)+1:end,j));
end
assignin('base','M_', M_);
assignin('base','oo_', oo_);
else
[H, dA, dOm, dYss, gp] = getH(A, B, estim_params_,M_,oo_,options_,kronflag,indx,indexo);
gp = reshape(gp,size(gp,1)*size(gp,2),size(gp,3));
gp = [dYss; gp];
% if isempty(H),
% JJ = [];
% GAM = [];
% return
% end
m = length(A);
GAM = lyapunov_symm(A,B*M_.Sigma_e*B',options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold,1,options_.debug);
k = find(abs(GAM) < 1e-12);
GAM(k) = 0;
% if useautocorr,
sdy = sqrt(diag(GAM));
sy = sdy*sdy';
% end
% BB = dOm*0;
% for j=1:length(indx),
% BB(:,:,j)= dA(:,:,j)*GAM*A'+A*GAM*dA(:,:,j)'+dOm(:,:,j);
% end
% XX = lyapunov_symm_mr(A,BB,options_.qz_criterium,options_.lyapunov_complex_threshold,0);
for j=1:length(indexo)
dum = lyapunov_symm(A,dOm(:,:,j),options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold,2,options_.debug);
% dum = XX(:,:,j);
k = find(abs(dum) < 1e-12);
dum(k) = 0;
if useautocorr
dsy = 1/2./sdy.*diag(dum);
dsy = dsy*sdy'+sdy*dsy';
dum1=dum;
dum1 = (dum1.*sy-dsy.*GAM)./(sy.*sy);
dum1 = dum1-diag(diag(dum1))+diag(diag(dum));
dumm = dyn_vech(dum1(mf,mf));
else
dumm = dyn_vech(dum(mf,mf));
end
for i=1:nlags
dum1 = A^i*dum;
if useautocorr
dum1 = (dum1.*sy-dsy.*(A^i*GAM))./(sy.*sy);
end
dumm = [dumm; vec(dum1(mf,mf))];
end
JJ(:,j) = dumm;
end
nexo = length(indexo);
for j=1:length(indx)
dum = lyapunov_symm(A,dA(:,:,j+nexo)*GAM*A'+A*GAM*dA(:,:,j+nexo)'+dOm(:,:,j+nexo),options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold,2,options_.debug);
% dum = XX(:,:,j);
k = find(abs(dum) < 1e-12);
dum(k) = 0;
if useautocorr
dsy = 1/2./sdy.*diag(dum);
dsy = dsy*sdy'+sdy*dsy';
dum1=dum;
dum1 = (dum1.*sy-dsy.*GAM)./(sy.*sy);
dum1 = dum1-diag(diag(dum1))+diag(diag(dum));
dumm = dyn_vech(dum1(mf,mf));
else
dumm = dyn_vech(dum(mf,mf));
end
for i=1:nlags
dum1 = A^i*dum;
for ii=1:i
dum1 = dum1 + A^(ii-1)*dA(:,:,j+nexo)*A^(i-ii)*GAM;
end
if useautocorr
dum1 = (dum1.*sy-dsy.*(A^i*GAM))./(sy.*sy);
end
dumm = [dumm; vec(dum1(mf,mf))];
end
JJ(:,j+nexo) = dumm;
end
JJ = [ [zeros(length(mf),nexo) dYss(mf,:)]; JJ];
end
if nargout >2
% sy=sy(mf,mf);
options_.ar=nlags;
nodecomposition = 1;
[GAM,stationary_vars] = th_autocovariances(oo_.dr,oo_.dr.order_var(mf),M_,options_,nodecomposition);
sy=sqrt(diag(GAM{1}));
sy=sy*sy';
if useautocorr
sy=sy-diag(diag(sy))+eye(length(mf));
GAM{1}=GAM{1}./sy;
else
for j=1:nlags
GAM{j+1}=GAM{j+1}.*sy;
end
end
gam = dyn_vech(GAM{1});
for j=1:nlags
gam = [gam; vec(GAM{j+1})];
end
end
gam = [oo_.dr.ys(oo_.dr.order_var(mf)); gam];
% if useautocorr,
warning('on','MATLAB:divideByZero')
% end
|