File: prior_draw_gsa.m

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (120 lines) | stat: -rw-r--r-- 4,486 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
function pdraw = prior_draw_gsa(init,rdraw)
% Draws from the prior distributions for use with Sensitivity Toolbox for DYNARE
%
% INPUTS
%   o init           [integer]  scalar equal to 1 (first call) or 0.
%   o rdraw
%
% OUTPUTS
%   o pdraw          [double]   draw from the joint prior density.
%
% ALGORITHM
%   ...
%
% SPECIAL REQUIREMENTS
%   MATLAB Statistics Toolbox
%
% Written by Marco Ratto
% Joint Research Centre, The European Commission,
% marco.ratto@ec.europa.eu

% Copyright (C) 2012-2015 European Commission
% Copyright (C) 2012-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global bayestopt_ options_ estim_params_ M_
persistent npar pshape p6 p7 p3 p4 lbcum ubcum

if init
    pshape = bayestopt_.pshape;
    p6 = bayestopt_.p6;
    p7 = bayestopt_.p7;
    p3 = bayestopt_.p3;
    p4 = bayestopt_.p4;
    npar = length(p6);
    pdraw = zeros(npar,1);
    lbcum = zeros(npar,1);
    ubcum = ones(npar,1);
    [junk1,junk2,junk3,lb,ub,junk4] = set_prior(estim_params_,M_,options_); %Prepare bounds
    if ~isempty(bayestopt_) && any(bayestopt_.pshape > 0)
        % Set prior bounds
        bounds = prior_bounds(bayestopt_, options_.prior_trunc);
        bounds.lb = max(bounds.lb,lb);
        bounds.ub = min(bounds.ub,ub);
    else  % estimated parameters but no declared priors
          % No priors are declared so Dynare will estimate the model by
          % maximum likelihood with inequality constraints for the parameters.
        bounds.lb = lb;
        bounds.ub = ub;
    end
    % set bounds for cumulative probabilities
    for i = 1:npar
        switch pshape(i)
          case 5% Uniform prior.
            p4(i) = min(p4(i),bounds.ub(i));
            p3(i) = max(p3(i),bounds.lb(i));
          case 3% Gaussian prior.
            lbcum(i) = 0.5 * erfc(-(bounds.lb(i)-p6(i))/p7(i) ./ sqrt(2));
            ubcum(i) = 0.5 * erfc(-(bounds.ub(i)-p6(i))/p7(i) ./ sqrt(2));
          case 2% Gamma prior.
            lbcum(i) = gamcdf(bounds.lb(i)-p3(i),p6(i),p7(i));
            ubcum(i) = gamcdf(bounds.ub(i)-p3(i),p6(i),p7(i));
          case 1% Beta distribution (TODO: generalized beta distribution)
            lbcum(i) = betainc((bounds.lb(i)-p3(i))./(p4(i)-p3(i)),p6(i),p7(i));
            ubcum(i) = betainc((bounds.ub(i)-p3(i))./(p4(i)-p3(i)),p6(i),p7(i));
          case 4% INV-GAMMA1 distribution
                % TO BE CHECKED
            lbcum(i) = gamcdf(1/(bounds.ub(i)-p3(i))^2,p7(i)/2,2/p6(i));
            ubcum(i) = gamcdf(1/(bounds.lb(i)-p3(i))^2,p7(i)/2,2/p6(i));
          case 6% INV-GAMMA2 distribution
                % TO BE CHECKED
            lbcum(i) = gamcdf(1/(bounds.ub(i)-p3(i)),p7(i)/2,2/p6(i));
            ubcum(i) = gamcdf(1/(bounds.lb(i)-p3(i)),p7(i)/2,2/p6(i));
          case 8
            lbcum(i) = weibcdf(bounds.lb(i)-p3(i),p6(i),p7(i));
            ubcum(i) = weibcdf(bounds.ub(i)-p3(i),p6(i),p7(i));
          otherwise
            % Nothing to do here.
        end
    end
    return
end


for i = 1:npar
    rdraw(:,i) = rdraw(:,i).*(ubcum(i)-lbcum(i))+lbcum(i);
    switch pshape(i)
      case 5% Uniform prior.
        pdraw(:,i) = rdraw(:,i)*(p4(i)-p3(i)) + p3(i);
      case 3% Gaussian prior.
        pdraw(:,i) = norminv(rdraw(:,i),p6(i),p7(i));
      case 2% Gamma prior.
        pdraw(:,i) = gaminv(rdraw(:,i),p6(i),p7(i))+p3(i);
      case 1% Beta distribution (TODO: generalized beta distribution)
        pdraw(:,i) = betainv(rdraw(:,i),p6(i),p7(i))*(p4(i)-p3(i))+p3(i);
      case 4% INV-GAMMA1 distribution
            % TO BE CHECKED
        pdraw(:,i) =  sqrt(1./gaminv(rdraw(:,i),p7(i)/2,2/p6(i)))+p3(i);
      case 6% INV-GAMMA2 distribution
            % TO BE CHECKED
        pdraw(:,i) =  1./gaminv(rdraw(:,i),p7(i)/2,2/p6(i))+p3(i);
      case 8
        pdraw(:,i) =  wblinv(rdraw(:,i),p6(i),p7(i))+p3(i);
      otherwise
        % Nothing to do here.
    end
end