File: th_moments.m

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (81 lines) | stat: -rw-r--r-- 2,209 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
function [vdec, corr, autocorr, z, zz] = th_moments(dr,var_list)
% [vdec, corr, autocorr, z, zz] = th_moments(dr,var_list)

% Copyright (C) 2012-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global M_ oo_ options_

nvar = size(var_list,2);
if nvar == 0
    nvar = length(dr.order_var);
    ivar = [1:nvar]';
else
    ivar=zeros(nvar,1);
    for i=1:nvar
        i_tmp = strmatch(var_list{:,i},M_.endo_names,'exact');
        if isempty(i_tmp)
            error(['One of the variables specified does not exist']) ;
        else
            ivar(i) = i_tmp;
        end
    end
end

[gamma_y,stationary_vars] = th_autocovariances(dr,ivar,M_, options_);
m = dr.ys(ivar(stationary_vars));


%   i1 = find(abs(diag(gamma_y{1})) > 1e-12);
i1 = [1:length(ivar)];
s2 = diag(gamma_y{1});
sd = sqrt(s2);


z = [ m sd s2 ];
mean = m;
var = gamma_y{1};


%'THEORETICAL MOMENTS';
%'MEAN','STD. DEV.','VARIANCE');
z;

%'VARIANCE DECOMPOSITION (in percent)';
if M_.exo_nbr>1
    vdec = 100*gamma_y{options_.ar+2}(i1,:);
else
    vdec = 100*ones(size(gamma_y{1}(i1,1)));
end
%'MATRIX OF CORRELATIONS';
if options_.opt_gsa.useautocorr
    corr = gamma_y{1}(i1,i1)./(sd(i1)*sd(i1)');
    corr = corr-diag(diag(corr))+diag(diag(gamma_y{1}(i1,i1)));
else
    corr = gamma_y{1}(i1,i1);
end
if options_.ar > 0
    %'COEFFICIENTS OF AUTOCORRELATION';
    for i=1:options_.ar
        if options_.opt_gsa.useautocorr
            autocorr{i} = gamma_y{i+1}(i1,i1);
        else
            autocorr{i} = gamma_y{i+1}(i1,i1).*(sd(i1)*sd(i1)');
        end
        zz(:,i) = diag(gamma_y{i+1}(i1,i1));
    end
end