1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
function [ide_hess, ide_moments, ide_model, ide_lre, derivatives_info, info, options_ident] = identification_analysis(params,indx,indexo,options_ident,dataset_,dataset_info, prior_exist,name_tex,init,tittxt,bounds)
% function [ide_hess, ide_moments, ide_model, ide_lre, derivatives_info, info] = identification_analysis(params,indx,indexo,options_ident,data_info, prior_exist,name_tex,init,analyis_type)
% given the parameter vector params, wraps all identification analyses
%
% INPUTS
% o params [array] parameter values for identification checks
% o indx [array] index of estimated parameters
% o indexo [array] index of estimated shocks
% o options_ident [structure] identification options
% o dataset_ [structure] the dataset after required transformation
% o dataset_info [structure] Various informations about the dataset (descriptive statistics and missing observations) info for Kalman Filter
% o prior_exist [integer]
% =1 when prior exists and indentification is checked only for estimated params and shocks
% =0 when prior is not defined and indentification is checked for all params and shocks
% o name_tex [char] list of tex names
% o init [integer] flag for initialization of persistent vars
% o tittxt [string] string indicating the title text for
% graphs and figures
%
% OUTPUTS
% o ide_hess [structure] identification results using Asymptotic Hessian
% o ide_moments [structure] identification results using theoretical moments
% o ide_model [structure] identification results using reduced form solution
% o ide_lre [structure] identification results using LRE model
% o derivatives_info [structure] info about analytic derivs
% o info output from dynare resolve
%
% SPECIAL REQUIREMENTS
% None
% Copyright (C) 2008-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global oo_ M_ options_ bayestopt_ estim_params_
persistent indH indJJ indLRE
nparam=length(params);
np=length(indx);
offset=nparam-np;
if ~isempty(estim_params_)
M_ = set_all_parameters(params,estim_params_,M_);
end
nlags = options_ident.ar;
useautocorr = options_ident.useautocorr;
advanced = options_ident.advanced;
replic = options_ident.replic;
periods = options_ident.periods;
max_dim_cova_group = options_ident.max_dim_cova_group;
normalize_jacobians = options_ident.normalize_jacobians;
kron_flag = options_ident.analytic_derivation_mode;
[I,J]=find(M_.lead_lag_incidence');
ide_hess = struct();
ide_moments = struct();
ide_model = struct();
ide_lre = struct();
derivatives_info = struct();
[A,B,ys,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_);
if info(1)==0
oo0=oo_;
tau=[oo_.dr.ys(oo_.dr.order_var); vec(A); dyn_vech(B*M_.Sigma_e*B')];
yy0=oo_.dr.ys(I);
[residual, g1 ] = feval([M_.fname,'_dynamic'],yy0, ...
repmat(oo_.exo_steady_state',[M_.maximum_exo_lag+M_.maximum_exo_lead+1]), M_.params, ...
oo_.dr.ys, 1);
vg1 = [oo_.dr.ys(oo_.dr.order_var); vec(g1)];
[JJ, H, gam, gp, dA, dOm, dYss] = getJJ(A, B, estim_params_, M_,oo0,options_,kron_flag,indx,indexo,bayestopt_.mf2,nlags,useautocorr);
derivatives_info.DT=dA;
derivatives_info.DOm=dOm;
derivatives_info.DYss=dYss;
if init
indJJ = (find(max(abs(JJ'),[],1)>1.e-8));
if isempty(indJJ) && any(any(isnan(JJ)))
error('There are NaN in the JJ matrix. Please check whether your model has units roots and you forgot to set diffuse_filter=1.' )
elseif any(any(isnan(gam)))
error('There are NaN''s in the theoretical moments: make sure that for non-stationary models stationary transformations of non-stationary observables are used for checking identification. [TIP: use first differences].')
end
while length(indJJ)<nparam && nlags<10
disp('The number of moments with non-zero derivative is smaller than the number of parameters')
disp(['Try increasing ar = ', int2str(nlags+1)])
nlags=nlags+1;
[JJ, H, gam, gp, dA, dOm, dYss] = getJJ(A, B, estim_params_, M_,oo0,options_,kron_flag,indx,indexo,bayestopt_.mf2,nlags,useautocorr);
derivatives_info.DT=dA;
derivatives_info.DOm=dOm;
derivatives_info.DYss=dYss;
options_.ar=nlags;
options_ident.ar=nlags;
indJJ = (find(max(abs(JJ'),[],1)>1.e-8));
end
if length(indJJ)<nparam
disp('The number of moments with non-zero derivative is smaller than the number of parameters')
disp('up to 10 lags: check your model')
disp('Either further increase ar or reduce the list of estimated parameters')
error('identification_analysis: there are not enough moments and too many parameters'),
end
indH = (find(max(abs(H'),[],1)>1.e-8));
indLRE = (find(max(abs(gp'),[],1)>1.e-8));
end
TAU(:,1)=tau(indH);
LRE(:,1)=vg1(indLRE);
GAM(:,1)=gam(indJJ);
siJ = (JJ(indJJ,:));
siH = (H(indH,:));
siLRE = (gp(indLRE,:));
ide_strength_J=NaN(1,nparam);
ide_strength_J_prior=NaN(1,nparam);
if init
ide_uncert_unnormaliz = NaN(1,nparam);
if prior_exist
offset_prior=0;
if ~isempty(estim_params_.var_exo)
normaliz_prior_std = bayestopt_.p2(1:estim_params_.nvx)'; % normalize with prior standard deviation
offset_prior=offset_prior+estim_params_.nvx+estim_params_.nvn;
else
normaliz_prior_std=[];
end
if ~isempty(estim_params_.corrx)
normaliz_prior_std = [normaliz_prior_std bayestopt_.p2(offset_prior+1:offset_prior+estim_params_.ncx)']; % normalize with prior standard deviation
offset_prior=offset_prior+estim_params_.ncx+estim_params_.ncn;
end
if ~isempty(estim_params_.param_vals)
normaliz_prior_std = [normaliz_prior_std bayestopt_.p2(offset_prior+1:offset_prior+estim_params_.np)']; % normalize with prior standard deviation
end
% normaliz = max([normaliz; normaliz1]);
% normaliz1(isinf(normaliz1)) = 1;
else
normaliz_prior_std = NaN(1,nparam);
end
try
options_.irf = 0;
options_.noprint = 1;
options_.order = 1;
options_.SpectralDensity.trigger = 0;
options_.periods = periods+100;
if options_.kalman_algo > 2
options_.kalman_algo = 1;
end
analytic_derivation = options_.analytic_derivation;
options_.analytic_derivation = -2;
info = stoch_simul(char(options_.varobs));
dataset_ = dseries(oo_.endo_simul(options_.varobs_id,100+1:end)',dates('1Q1'), options_.varobs);
derivatives_info.no_DLIK=1;
bounds = prior_bounds(bayestopt_, options_.prior_trunc); %reset bounds as lb and ub must only be operational during mode-finding
[fval,info,cost_flag,DLIK,AHess,ys,trend_coeff,M_,options_,bayestopt_,oo_] = dsge_likelihood(params',dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,bounds,oo_,derivatives_info);
% fval = DsgeLikelihood(xparam1,data_info,options_,M_,estim_params_,bayestopt_,oo_);
options_.analytic_derivation = analytic_derivation;
AHess=-AHess;
if min(eig(AHess))<-1.e-10
error('identification_analysis: Analytic Hessian is not positive semi-definite!')
end
% chol(AHess);
ide_hess.AHess= AHess;
deltaM = sqrt(diag(AHess));
iflag=any((deltaM.*deltaM)==0);
tildaM = AHess./((deltaM)*(deltaM'));
if iflag || rank(AHess)>rank(tildaM)
[ide_hess.cond, ide_hess.ind0, ide_hess.indno, ide_hess.ino, ide_hess.Mco, ide_hess.Pco] = identification_checks(AHess, 1);
else
[ide_hess.cond, ide_hess.ind0, ide_hess.indno, ide_hess.ino, ide_hess.Mco, ide_hess.Pco] = identification_checks(tildaM, 1);
end
indok = find(max(ide_hess.indno,[],1)==0);
cparam(indok,indok) = inv(AHess(indok,indok));
ide_uncert_unnormaliz(indok) = sqrt(diag(cparam(indok,indok)))';
cmm = NaN(size(siJ,1),size(siJ,1));
ind1=find(ide_hess.ind0);
cmm = siJ(:,ind1)*((AHess(ind1,ind1))\siJ(:,ind1)');
temp1=((AHess(ind1,ind1))\siH(:,ind1)');
diag_chh=sum(siH(:,ind1)'.*temp1)';
% chh = siH(:,ind1)*((AHess(ind1,ind1))\siH(:,ind1)');
ind1=ind1(ind1>offset);
clre = siLRE(:,ind1-offset)*((AHess(ind1,ind1))\siLRE(:,ind1-offset)');
rhoM=sqrt(1./diag(inv(tildaM(indok,indok))));
% deltaM = deltaM.*abs(params');
flag_score=1;
catch
% replic = max([replic, nparam*(nparam+1)/2*10]);
replic = max([replic, length(indJJ)*3]);
cmm = simulated_moment_uncertainty(indJJ, periods, replic,options_,M_,oo_);
% [V,D,W]=eig(cmm);
sd=sqrt(diag(cmm));
cc=cmm./(sd*sd');
if isoctave || matlab_ver_less_than('8.3')
[V,D]=eig(cc);
%fix for older Matlab versions that do not support computing left eigenvalues, see http://mathworks.com/help/releases/R2012b/matlab/ref/eig.html
[W,junk] = eig(cc.');
W = conj(W);
else
[V,D,W]=eig(cc);
end
id=find(diag(D)>1.e-8);
siTMP=siJ./repmat(sd,[1 nparam]);
MIM=(siTMP'*V(:,id))*(D(id,id)\(W(:,id)'*siTMP));
clear siTMP;
% MIM=siJ(:,indok)'*(cmm\siJ(:,indok));
% look for independent moments!
% % % sd=sqrt(diag(cmm));
% % % cc=cmm./(sd*sd');
% % % ix=[];
% % % for jc=1:length(cmm),
% % % jcheck=find(abs(cc(:,jc))>(1-1.e-6));
% % % ix=[ix; jcheck(jcheck>jc)];
% % % end
% % % iy=find(~ismember([1:length(cmm)],ix));
% % % indJJ=indJJ(iy);
% % % GAM=GAM(iy);
% % % cmm=cmm(iy,iy);
% % % siJ = (JJ(indJJ,:));
% % % MIM=siJ'*(cmm\siJ);
ide_hess.AHess= MIM;
deltaM = sqrt(diag(MIM));
iflag=any((deltaM.*deltaM)==0);
tildaM = MIM./((deltaM)*(deltaM'));
if iflag || rank(MIM)>rank(tildaM)
[ide_hess.cond, ide_hess.ind0, ide_hess.indno, ide_hess.ino, ide_hess.Mco, ide_hess.Pco] = identification_checks(MIM, 1);
else
[ide_hess.cond, ide_hess.ind0, ide_hess.indno, ide_hess.ino, ide_hess.Mco, ide_hess.Pco] = identification_checks(tildaM, 1);
end
indok = find(max(ide_hess.indno,[],1)==0);
% rhoM=sqrt(1-1./diag(inv(tildaM)));
% rhoM=(1-1./diag(inv(tildaM)));
ind1=find(ide_hess.ind0);
temp1=((MIM(ind1,ind1))\siH(:,ind1)');
diag_chh=sum(siH(:,ind1)'.*temp1)';
% chh = siH(:,ind1)*((MIM(ind1,ind1))\siH(:,ind1)');
ind1=ind1(ind1>offset);
clre = siLRE(:,ind1-offset)*((MIM(ind1,ind1))\siLRE(:,ind1-offset)');
if ~isempty(indok)
rhoM(indok)=sqrt(1./diag(inv(tildaM(indok,indok))));
ide_uncert_unnormaliz(indok) = (sqrt(diag(inv(tildaM(indok,indok))))./deltaM(indok))'; %sqrt(diag(inv(MIM(indok,indok))))';
end
% deltaM = deltaM.*abs(params')
flag_score=0;
end
ide_strength_J(indok) = (1./(ide_uncert_unnormaliz(indok)'./abs(params(indok)')));
ide_strength_J_prior(indok) = (1./(ide_uncert_unnormaliz(indok)'./normaliz_prior_std(indok)'));
%ide_strength_J(params==0)=1./ide_uncert_unnormaliz(params==0)';
sensitivity_zero_pos=find(isinf(deltaM));
deltaM_prior = deltaM.*abs(normaliz_prior_std');
deltaM = deltaM.*abs(params');
%deltaM(params==0)=deltaM_prior(params==0);
quant = siJ./repmat(sqrt(diag(cmm)),1,nparam);
if size(quant,1)==1
siJnorm = abs(quant).*normaliz_prior_std;
else
siJnorm = vnorm(quant).*normaliz_prior_std;
end
% siJnorm = vnorm(siJ(inok,:)).*normaliz;
quant=[];
% inok = find((abs(TAU)<1.e-8));
% isok = find((abs(TAU)>=1.e-8));
% quant(isok,:) = siH(isok,:)./repmat(TAU(isok,1),1,nparam);
% quant(inok,:) = siH(inok,:)./repmat(mean(abs(TAU)),length(inok),nparam);
% quant = siH./repmat(sqrt(diag(chh)),1,nparam);
iy = find(diag_chh);
indH=indH(iy);
siH=siH(iy,:);
if ~isempty(iy)
quant = siH./repmat(sqrt(diag_chh(iy)),1,nparam);
if size(quant,1)==1
siHnorm = abs(quant).*normaliz_prior_std;
else
siHnorm = vnorm(quant).*normaliz_prior_std;
end
else
siHnorm = [];
end
% siHnorm = vnorm(siH./repmat(TAU,1,nparam)).*normaliz;
quant=[];
% inok = find((abs(LRE)<1.e-8));
% isok = find((abs(LRE)>=1.e-8));
% quant(isok,:) = siLRE(isok,:)./repmat(LRE(isok,1),1,np);
% quant(inok,:) = siLRE(inok,:)./repmat(mean(abs(LRE)),length(inok),np);
diag_clre = diag(clre);
iy = find(diag_clre);
indLRE=indLRE(iy);
siLRE=siLRE(iy,:);
if ~isempty(iy)
quant = siLRE./repmat(sqrt(diag_clre(iy)),1,np);
if size(quant,1)==1
siLREnorm = abs(quant).*normaliz_prior_std(offset+1:end);
else
siLREnorm = vnorm(quant).*normaliz_prior_std(offset+1:end);
end
else
siLREnorm=[];
end
% siLREnorm = vnorm(siLRE./repmat(LRE,1,nparam-offset)).*normaliz(offset+1:end);
ide_hess.ide_strength_J=ide_strength_J;
ide_hess.ide_strength_J_prior=ide_strength_J_prior;
ide_hess.deltaM=deltaM;
ide_hess.deltaM_prior=deltaM_prior;
ide_hess.sensitivity_zero_pos=sensitivity_zero_pos;
ide_hess.identified_parameter_indices=indok;
ide_moments.siJnorm=siJnorm;
ide_model.siHnorm=siHnorm;
ide_lre.siLREnorm=siLREnorm;
ide_hess.flag_score=flag_score;
end
if normalize_jacobians
normH = max(abs(siH)')';
normH = normH(:,ones(nparam,1));
normJ = max(abs(siJ)')';
normJ = normJ(:,ones(nparam,1));
normLRE = max(abs(siLRE)')';
normLRE = normLRE(:,ones(size(gp,2),1));
else
normH = 1;
normJ = 1;
normLRE = 1;
end
ide_moments.indJJ=indJJ;
ide_model.indH=indH;
ide_lre.indLRE=indLRE;
ide_moments.siJ=siJ;
ide_model.siH=siH;
ide_lre.siLRE=siLRE;
ide_moments.GAM=GAM;
ide_model.TAU=TAU;
ide_lre.LRE=LRE;
% [ide_checks.idemodel_Mco, ide_checks.idemoments_Mco, ide_checks.idelre_Mco, ...
% ide_checks.idemodel_Pco, ide_checks.idemoments_Pco, ide_checks.idelre_Pco, ...
% ide_checks.idemodel_cond, ide_checks.idemoments_cond, ide_checks.idelre_cond, ...
% ide_checks.idemodel_ee, ide_checks.idemoments_ee, ide_checks.idelre_ee, ...
% ide_checks.idemodel_ind, ide_checks.idemoments_ind, ...
% ide_checks.idemodel_indno, ide_checks.idemoments_indno, ...
% ide_checks.idemodel_ino, ide_checks.idemoments_ino] = ...
% identification_checks(H(indH,:)./normH(:,ones(nparam,1)),JJ(indJJ,:)./normJ(:,ones(nparam,1)), gp(indLRE,:)./normLRE(:,ones(size(gp,2),1)));
[ide_moments.cond, ide_moments.ind0, ide_moments.indno, ide_moments.ino, ide_moments.Mco, ide_moments.Pco, ide_moments.jweak, ide_moments.jweak_pair] = ...
identification_checks(JJ(indJJ,:)./normJ, 0);
[ide_model.cond, ide_model.ind0, ide_model.indno, ide_model.ino, ide_model.Mco, ide_model.Pco, ide_model.jweak, ide_model.jweak_pair] = ...
identification_checks(H(indH,:)./normH, 0);
[ide_lre.cond, ide_lre.ind0, ide_lre.indno, ide_lre.ino, ide_lre.Mco, ide_lre.Pco, ide_lre.jweak, ide_lre.jweak_pair] = ...
identification_checks(gp(indLRE,:)./normLRE, 0);
normJ=1;
[U, S, V]=svd(JJ(indJJ,:)./normJ,0);
S=diag(S);
S=[S;zeros(size(JJ,2)-length(indJJ),1)];
if nparam>8
ide_moments.S = S([1:4, end-3:end]);
ide_moments.V = V(:,[1:4, end-3:end]);
else
ide_moments.S = S;
ide_moments.V = V;
end
indok = find(max(ide_moments.indno,[],1)==0);
if advanced
[ide_moments.pars, ide_moments.cosnJ] = ident_bruteforce(JJ(indJJ,:)./normJ,max_dim_cova_group,options_.TeX,name_tex,tittxt);
end
end
|