1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
function imcforecast(constrained_paths, constrained_vars, options_cond_fcst)
% Computes conditional forecasts.
%
% INPUTS
% - consnstrained_paths [double] m*p array, where m is the number of constrained endogenous variables and p is the number of constrained periods.
% - constrained_vars [integer] m*1 array, indices in M_.endo_names of the constrained variables.
% - options_cond_fcst [structure] containing the options. The fields are:
%
% + replic [integer] scalar, number of monte carlo simulations.
% + parameter_set [char] values of the estimated parameters:
% 'posterior_mode',
% 'posterior_mean',
% 'posterior_median',
% 'prior_mode' or
% 'prior mean'.
% [double] np*1 array, values of the estimated parameters.
% + controlled_varexo [char] m*n char array, list of controlled exogenous variables (n is the length of the longest name).
% + conf_sig [double] scalar in [0,1], probability mass covered by the confidence bands.
%
% OUTPUTS
% None.
% (n is the length of the longest name)
% SPECIAL REQUIREMENTS
% This routine has to be called after an estimation statement or an estimated_params block.
%
% REMARKS
% [1] Results are stored in a structure which is saved in a mat file called conditional_forecasts.mat.
% [2] Use the function plot_icforecast to plot the results.
% Copyright (C) 2006-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global options_ oo_ M_ bayestopt_ estim_params_
if ~isfield(options_cond_fcst,'parameter_set') || isempty(options_cond_fcst.parameter_set)
if isfield(oo_,'posterior_mode')
options_cond_fcst.parameter_set = 'posterior_mode';
elseif isfield(oo_,'mle_mode')
options_cond_fcst.parameter_set = 'mle_mode';
else
error('No valid parameter set found')
end
end
if ~isfield(options_cond_fcst,'replic') || isempty(options_cond_fcst.replic)
options_cond_fcst.replic = 5000;
end
if ~isfield(options_cond_fcst,'periods') || isempty(options_cond_fcst.periods)
options_cond_fcst.periods = 40;
end
if ~isfield(options_cond_fcst,'conditional_forecast') || ~isfield(options_cond_fcst.conditional_forecast,'conf_sig') || isempty(options_cond_fcst.conditional_forecast.conf_sig)
options_cond_fcst.conditional_forecast.conf_sig = .8;
end
if isequal(options_cond_fcst.parameter_set,'calibration')
estimated_model = 0;
else
estimated_model = 1;
end
if estimated_model
if options_.prefilter
error('imcforecast:: Conditional forecasting does not support the prefiltering option')
end
if ischar(options_cond_fcst.parameter_set)
switch options_cond_fcst.parameter_set
case 'posterior_mode'
xparam = get_posterior_parameters('mode',M_,estim_params_,oo_,options_);
graph_title='Posterior Mode';
case 'posterior_mean'
xparam = get_posterior_parameters('mean',M_,estim_params_,oo_,options_);
graph_title='Posterior Mean';
case 'posterior_median'
xparam = get_posterior_parameters('median',M_,estim_params_,oo_,options_);
graph_title='Posterior Median';
case 'mle_mode'
xparam = get_posterior_parameters('mode',M_,estim_params_,oo_,options_,'mle_');
graph_title='ML Mode';
case 'prior_mode'
xparam = bayestopt_.p5(:);
graph_title='Prior Mode';
case 'prior_mean'
xparam = bayestopt_.p1;
graph_title='Prior Mean';
otherwise
disp('imcforecast:: If the input argument is a string, then it has to be equal to:')
disp(' ''calibration'', ')
disp(' ''posterior_mode'', ')
disp(' ''posterior_mean'', ')
disp(' ''posterior_median'', ')
disp(' ''prior_mode'' or')
disp(' ''prior_mean''.')
error('imcforecast:: Wrong argument type!')
end
else
xparam = options_cond_fcst.parameter_set;
if length(xparam)~=length(M_.params)
error('imcforecast:: The dimension of the vector of parameters doesn''t match the number of estimated parameters!')
end
end
set_parameters(xparam);
[dataset_,dataset_info] = makedataset(options_);
data = transpose(dataset_.data);
data_index = dataset_info.missing.aindex;
gend = dataset_.nobs;
missing_value = dataset_info.missing.state;
%store qz_criterium
qz_criterium_old=options_.qz_criterium;
options_=select_qz_criterium_value(options_);
options_smoothed_state_uncertainty_old = options_.smoothed_state_uncertainty;
[atT,innov,measurement_error,filtered_state_vector,ys,trend_coeff,aK,T,R,P,PK,decomp,trend_addition,state_uncertainty,M_,oo_,options_,bayestopt_] = DsgeSmoother(xparam,gend,data,data_index,missing_value,M_,oo_,options_,bayestopt_,estim_params_);
options_.smoothed_state_uncertainty = options_smoothed_state_uncertainty_old;
%get constant part
if options_.noconstant
constant = zeros(size(ys,1),options_cond_fcst.periods+1);
else
if options_.loglinear
constant = repmat(log(ys),1,options_cond_fcst.periods+1);
else
constant = repmat(ys,1,options_cond_fcst.periods+1);
end
end
%get trend part (which also takes care of prefiltering); needs to
%include the last period
if bayestopt_.with_trend == 1
[trend_addition] =compute_trend_coefficients(M_,options_,size(bayestopt_.smoother_mf,1),gend+options_cond_fcst.periods);
trend_addition = trend_addition(:,gend:end);
else
trend_addition=zeros(size(bayestopt_.smoother_mf,1),1+options_cond_fcst.periods);
end
% add trend to constant
for obs_iter=1:length(options_.varobs)
j = strmatch(options_.varobs{obs_iter},M_.endo_names,'exact');
constant(j,:) = constant(j,:)+trend_addition(obs_iter,:);
end
trend = constant(oo_.dr.order_var,:);
InitState(:,1) = atT(:,end);
else
qz_criterium_old=options_.qz_criterium;
if isempty(options_.qz_criterium)
options_.qz_criterium = 1+1e-6;
end
graph_title='Calibration';
if ~isfield(oo_.dr,'kstate')
error('You need to call stoch_simul before conditional_forecast')
end
end
if options_.logged_steady_state %if steady state was previously logged, undo this
oo_.dr.ys=exp(oo_.dr.ys);
oo_.steady_state=exp(oo_.steady_state);
options_.logged_steady_state=0;
end
[T,R,ys,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_);
if options_.loglinear && isfield(oo_.dr,'ys') && options_.logged_steady_state==0 %log steady state
oo_.dr.ys=log_variable(1:M_.endo_nbr,oo_.dr.ys,M_);
ys=oo_.dr.ys;
oo_.steady_state=log_variable(1:M_.endo_nbr,oo_.steady_state,M_);
options_.logged_steady_state=1; %set option for use in stoch_simul
end
if ~isdiagonal(M_.Sigma_e)
warning(sprintf('The innovations are correlated (the covariance matrix has non zero off diagonal elements), the results of the conditional forecasts will\ndepend on the ordering of the innovations (as declared after varexo) because a Cholesky decomposition is used to factorize the covariance matrix.\n\n=> It is preferable to declare the correlations in the model block (explicitly imposing the identification restrictions), unless you are satisfied\nwith the implicit identification restrictions implied by the Cholesky decomposition.'))
sQ = chol(M_.Sigma_e,'lower');
else
sQ = sqrt(M_.Sigma_e);
end
if ~estimated_model
if isempty(M_.endo_histval)
y0 = ys;
else
if options_.loglinear
%make sure that only states are updated (controls have value of 0 in vector)
y0=zeros(size(ys));
y0_logged = log_variable(1:M_.endo_nbr,M_.endo_histval,M_);
y0(M_.endo_histval~=0)=y0_logged(M_.endo_histval~=0);
else
y0 = M_.endo_histval;
end
end
InitState(:,1) = y0(oo_.dr.order_var)-ys(oo_.dr.order_var,:); %initial state in deviations from steady state
trend = repmat(ys(oo_.dr.order_var,:),1,options_cond_fcst.periods+1); %trend needs to contain correct steady state
end
NumberOfStates = length(InitState);
FORCS1 = zeros(NumberOfStates,options_cond_fcst.periods+1,options_cond_fcst.replic);
FORCS1(:,1,:) = repmat(InitState,1,options_cond_fcst.replic); %set initial steady state to deviations from steady state in first period
EndoSize = M_.endo_nbr;
ExoSize = M_.exo_nbr;
n1 = size(constrained_vars,1);
n2 = size(options_cond_fcst.controlled_varexo,1);
constrained_vars(:,1)=oo_.dr.inv_order_var(constrained_vars); % must be in decision rule order
if n1 ~= n2
error(['imcforecast:: The number of constrained variables doesn''t match the number of controlled shocks'])
end
idx = [];
jdx = [];
for i = 1:n1
idx = [idx ; constrained_vars(i,:)];
% idx = [idx ; oo_.dr.inv_order_var(constrained_vars(i,:))];
jdx = [jdx ; strmatch(deblank(options_cond_fcst.controlled_varexo(i,:)),M_.exo_names,'exact')];
end
mv = zeros(n1,NumberOfStates);
mu = zeros(ExoSize,n2);
for i=1:n1
mv(i,idx(i)) = 1;
mu(jdx(i),i) = 1;
end
% number of periods with constrained values
cL = size(constrained_paths,2);
%transform constrained periods into deviations from steady state; note that
%trend includes last actual data point and therefore we need to start in
%period 2
constrained_paths = bsxfun(@minus,constrained_paths,trend(idx,2:1+cL));
FORCS1_shocks = zeros(n1,cL,options_cond_fcst.replic);
%randn('state',0);
for b=1:options_cond_fcst.replic %conditional forecast using cL set to constrained values
shocks = sQ*randn(ExoSize,options_cond_fcst.periods);
shocks(jdx,:) = zeros(length(jdx),options_cond_fcst.periods);
[FORCS1(:,:,b), FORCS1_shocks(:,:,b)] = mcforecast3(cL,options_cond_fcst.periods,constrained_paths,shocks,FORCS1(:,:,b),T,R,mv, mu);
FORCS1(:,:,b)=FORCS1(:,:,b)+trend; %add trend
end
mFORCS1 = mean(FORCS1,3);
mFORCS1_shocks = mean(FORCS1_shocks,3);
tt = (1-options_cond_fcst.conditional_forecast.conf_sig)/2;
t1 = round(options_cond_fcst.replic*tt);
t2 = round(options_cond_fcst.replic*(1-tt));
forecasts.controlled_variables = constrained_vars;
forecasts.instruments = options_cond_fcst.controlled_varexo;
for i = 1:EndoSize
forecasts.cond.Mean.(deblank(M_.endo_names(oo_.dr.order_var(i),:)))= mFORCS1(i,:)';
tmp = sort(squeeze(FORCS1(i,:,:))');
forecasts.cond.ci.(deblank(M_.endo_names(oo_.dr.order_var(i),:))) = [tmp(t1,:)' ,tmp(t2,:)' ]';
end
for i = 1:n1
forecasts.controlled_exo_variables.Mean.(deblank(options_cond_fcst.controlled_varexo(i,:))) = mFORCS1_shocks(i,:)';
tmp = sort(squeeze(FORCS1_shocks(i,:,:))');
forecasts.controlled_exo_variables.ci.(deblank(options_cond_fcst.controlled_varexo(i,:))) = [tmp(t1,:)' ,tmp(t2,:)' ]';
end
clear FORCS1 mFORCS1_shocks;
FORCS2 = zeros(NumberOfStates,options_cond_fcst.periods+1,options_cond_fcst.replic);
FORCS2(:,1,:) = repmat(InitState,1,options_cond_fcst.replic); %set initial steady state to deviations from steady state in first period
%randn('state',0);
for b=1:options_cond_fcst.replic %conditional forecast using cL set to 0
shocks = sQ*randn(ExoSize,options_cond_fcst.periods);
shocks(jdx,:) = zeros(length(jdx),options_cond_fcst.periods);
FORCS2(:,:,b) = mcforecast3(0,options_cond_fcst.periods,constrained_paths,shocks,FORCS2(:,:,b),T,R,mv, mu)+trend;
end
mFORCS2 = mean(FORCS2,3);
for i = 1:EndoSize
forecasts.uncond.Mean.(deblank(M_.endo_names(oo_.dr.order_var(i),:)))= mFORCS2(i,:)';
tmp = sort(squeeze(FORCS2(i,:,:))');
forecasts.uncond.ci.(deblank(M_.endo_names(oo_.dr.order_var(i),:))) = [tmp(t1,:)' ,tmp(t2,:)' ]';
end
forecasts.graph.title=graph_title;
forecasts.graph.fname=M_.fname;
%reset qz_criterium
options_.qz_criterium=qz_criterium_old;
save('conditional_forecasts.mat','forecasts');
|