1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
function [LIK, LIKK, a, P] = kalman_filter(Y,start,last,a,P,kalman_tol,riccati_tol,rescale_prediction_error_covariance,presample,T,Q,R,H,Z,mm,pp,rr,Zflag,diffuse_periods,analytic_derivation,DT,DYss,DOm,DH,DP,D2T,D2Yss,D2Om,D2H,D2P)
% Computes the likelihood of a stationary state space model.
%@info:
%! @deftypefn {Function File} {[@var{LIK},@var{likk},@var{a},@var{P} ] =} DsgeLikelihood (@var{Y}, @var{start}, @var{last}, @var{a}, @var{P}, @var{kalman_tol}, @var{riccati_tol},@var{presample},@var{T},@var{Q},@var{R},@var{H},@var{Z},@var{mm},@var{pp},@var{rr},@var{Zflag},@var{diffuse_periods})
%! @anchor{kalman_filter}
%! @sp 1
%! Computes the likelihood of a stationary state space model, given initial condition for the states (mean and variance).
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item Y
%! Matrix (@var{pp}*T) of doubles, data.
%! @item start
%! Integer scalar, first period.
%! @item last
%! Integer scalar, last period (@var{last}-@var{first} has to be inferior to T).
%! @item a
%! Vector (@var{mm}*1) of doubles, initial mean of the state vector.
%! @item P
%! Matrix (@var{mm}*@var{mm}) of doubles, initial covariance matrix of the state vector.
%! @item kalman_tol
%! Double scalar, tolerance parameter (rcond, inversibility of the covariance matrix of the prediction errors).
%! @item riccati_tol
%! Double scalar, tolerance parameter (iteration over the Riccati equation).
%! @item presample
%! Integer scalar, presampling if strictly positive (number of initial iterations to be discarded when evaluating the likelihood).
%! @item T
%! Matrix (@var{mm}*@var{mm}) of doubles, transition matrix of the state equation.
%! @item Q
%! Matrix (@var{rr}*@var{rr}) of doubles, covariance matrix of the structural innovations (noise in the state equation).
%! @item R
%! Matrix (@var{mm}*@var{rr}) of doubles, second matrix of the state equation relating the structural innovations to the state variables.
%! @item H
%! Matrix (@var{pp}*@var{pp}) of doubles, covariance matrix of the measurement errors (if no measurement errors set H as a zero scalar).
%! @item Z
%! Matrix (@var{pp}*@var{mm}) of doubles or vector of integers, matrix relating the states to the observed variables or vector of indices (depending on the value of @var{Zflag}).
%! @item mm
%! Integer scalar, number of state variables.
%! @item pp
%! Integer scalar, number of observed variables.
%! @item rr
%! Integer scalar, number of structural innovations.
%! @item Zflag
%! Integer scalar, equal to 0 if Z is a vector of indices targeting the obseved variables in the state vector, equal to 1 if Z is a @var{pp}*@var{mm} matrix.
%! @item diffuse_periods
%! Integer scalar, number of diffuse filter periods in the initialization step.
%! @end table
%! @sp 2
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item LIK
%! Double scalar, value of (minus) the likelihood.
%! @item likk
%! Column vector of doubles, values of the density of each observation.
%! @item a
%! Vector (@var{mm}*1) of doubles, mean of the state vector at the end of the (sub)sample.
%! @item P
%! Matrix (@var{mm}*@var{mm}) of doubles, covariance of the state vector at the end of the (sub)sample.
%! @end table
%! @sp 2
%! @strong{This function is called by:}
%! @sp 1
%! @ref{DsgeLikelihood}
%! @sp 2
%! @strong{This function calls:}
%! @sp 1
%! @ref{kalman_filter_ss}
%! @end deftypefn
%@eod:
% Copyright (C) 2004-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% Set defaults.
if nargin<17
Zflag = 0;
end
if nargin<18
diffuse_periods = 0;
end
if nargin<19
analytic_derivation = 0;
end
if isempty(Zflag)
Zflag = 0;
end
if isempty(diffuse_periods)
diffuse_periods = 0;
end
% Get sample size.
smpl = last-start+1;
% Initialize some variables.
dF = 1;
QQ = R*Q*transpose(R); % Variance of R times the vector of structural innovations.
t = start; % Initialization of the time index.
likk = zeros(smpl,1); % Initialization of the vector gathering the densities.
LIK = Inf; % Default value of the log likelihood.
oldK = Inf;
notsteady = 1;
F_singular = true;
asy_hess=0;
if analytic_derivation == 0
DLIK=[];
Hess=[];
LIKK=[];
else
k = size(DT,3); % number of structural parameters
DLIK = zeros(k,1); % Initialization of the score.
Da = zeros(mm,k); % Derivative State vector.
dlikk = zeros(smpl,k);
if Zflag==0
C = zeros(pp,mm);
for ii=1:pp, C(ii,Z(ii))=1; end % SELECTION MATRIX IN MEASUREMENT EQ. (FOR WHEN IT IS NOT CONSTANT)
else
C=Z;
end
dC = zeros(pp,mm,k); % either selection matrix or schur have zero derivatives
if analytic_derivation==2
Hess = zeros(k,k); % Initialization of the Hessian
D2a = zeros(mm,k,k); % State vector.
d2C = zeros(pp,mm,k,k);
else
asy_hess=D2T;
Hess=[];
D2a=[];
D2T=[];
D2Yss=[];
end
if asy_hess
Hess = zeros(k,k); % Initialization of the Hessian
end
LIK={inf,DLIK,Hess};
LIKK={likk,dlikk};
end
while notsteady && t<=last
s = t-start+1;
if Zflag
v = Y(:,t)-Z*a;
F = Z*P*Z' + H;
else
v = Y(:,t)-a(Z);
F = P(Z,Z) + H;
end
badly_conditioned_F = false;
if rescale_prediction_error_covariance
sig=sqrt(diag(F));
if any(diag(F)<kalman_tol) || rcond(F./(sig*sig'))<kalman_tol
badly_conditioned_F = true;
end
else
if rcond(F)<kalman_tol
badly_conditioned_F = true;
end
end
if badly_conditioned_F
if ~all(abs(F(:))<kalman_tol)
% Use univariate filter (will remove observations with zero variance prediction error)
return
else
% Pathological case, discard draw.
return
end
else
F_singular = false;
if rescale_prediction_error_covariance
log_dF = log(det(F./(sig*sig')))+2*sum(log(sig));
iF = inv(F./(sig*sig'))./(sig*sig');
else
log_dF = log(det(F));
iF = inv(F);
end
likk(s) = log_dF+transpose(v)*iF*v;
if Zflag
K = P*Z'*iF;
Ptmp = T*(P-K*Z*P)*transpose(T)+QQ;
else
K = P(:,Z)*iF;
Ptmp = T*(P-K*P(Z,:))*transpose(T)+QQ;
end
tmp = (a+K*v);
if analytic_derivation
if analytic_derivation==2
[Da,DP,DLIKt,D2a,D2P, Hesst] = computeDLIK(k,tmp,Z,Zflag,v,T,K,P,iF,Da,DYss,DT,DOm,DP,DH,notsteady,D2a,D2Yss,D2T,D2Om,D2P);
else
[Da,DP,DLIKt,Hesst] = computeDLIK(k,tmp,Z,Zflag,v,T,K,P,iF,Da,DYss,DT,DOm,DP,DH,notsteady);
end
if t>presample
DLIK = DLIK + DLIKt;
if analytic_derivation==2 || asy_hess
Hess = Hess + Hesst;
end
end
dlikk(s,:)=DLIKt;
end
a = T*tmp;
P = Ptmp;
notsteady = max(abs(K(:)-oldK))>riccati_tol;
oldK = K(:);
end
t = t+1;
end
if F_singular
error('The variance of the forecast error remains singular until the end of the sample')
end
% Add observation's densities constants and divide by two.
likk(1:s) = .5*(likk(1:s) + pp*log(2*pi));
if analytic_derivation
DLIK = DLIK/2;
dlikk = dlikk/2;
if analytic_derivation==2 || asy_hess
if asy_hess==0
Hess = Hess + tril(Hess,-1)';
end
Hess = -Hess/2;
end
end
% Call steady state Kalman filter if needed.
if t <= last
if analytic_derivation
if analytic_derivation==2
[tmp, tmp2] = kalman_filter_ss(Y, t, last, a, T, K, iF, dF, Z, pp, Zflag, analytic_derivation, Da, DT, DYss, D2a, D2T, D2Yss);
else
[tmp, tmp2] = kalman_filter_ss(Y, t, last, a, T, K, iF, dF, Z, pp, Zflag, analytic_derivation, Da, DT, DYss, asy_hess);
end
likk(s+1:end) = tmp2{1};
dlikk(s+1:end,:) = tmp2{2};
DLIK = DLIK + tmp{2};
if analytic_derivation==2 || asy_hess
Hess = Hess + tmp{3};
end
else
[tmp, likk(s+1:end)] = kalman_filter_ss(Y, t, last, a, T, K, iF, log_dF, Z, pp, Zflag);
end
end
% Compute minus the log-likelihood.
if presample>diffuse_periods
LIK = sum(likk(1+(presample-diffuse_periods):end));
else
LIK = sum(likk);
end
if analytic_derivation
if analytic_derivation==2 || asy_hess
LIK={LIK, DLIK, Hess};
else
LIK={LIK, DLIK};
end
LIKK={likk, dlikk};
else
LIKK=likk;
end
|