File: lpdfig1.m

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (60 lines) | stat: -rw-r--r-- 2,070 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
function [ldens,Dldens,D2ldens] = lpdfig1(x,s,nu)
% Evaluates the logged INVERSE-GAMMA-1 PDF at x.
%
% X ~ IG1(s,nu) if X = sqrt(Y) where Y ~ IG2(s,nu) and Y = inv(Z) with Z ~ G(nu/2,2/s) (Gamma distribution)
%
% See L. Bauwens, M. Lubrano and J-F. Richard [1999, appendix A] for more details.
%
%
% INPUTS
%    x     [double]  m*n matrix of locations,
%    s     [double]  m*n matrix or scalar, First INVERSE-GAMMA-1 distribution parameters,
%    nu    [double]  m*n matrix or scalar, Second INVERSE-GAMMA-1 distribution parameters.
%
% OUTPUTS
%    ldens [double]  m*n matrix of logged INVERSE-GAMMA-1 densities evaluated at x.
%
% SPECIAL REQUIREMENTS
%    none

% Copyright (C) 2004-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

ldens = -Inf( size(x) ) ;
idx = find( x>0 ) ;

if length(s)==1
    ldens(idx) = log(2) - gammaln(.5*nu) - .5*nu*(log(2)-log(s)) - (nu+1)*log(x(idx)) - .5*s./(x(idx).*x(idx)) ;
else
    ldens(idx) = log(2) - gammaln(.5*nu(idx)) - .5*nu(idx).*(log(2)-log(s(idx))) - (nu(idx)+1).*log(x(idx)) - .5*s(idx)./(x(idx).*x(idx)) ;
end

if nargout >1
    if length(s)==1
        Dldens(idx) = - (nu+1)./(x(idx)) + s./(x(idx).^3) ;
    else
        Dldens(idx) = - (nu(idx)+1)./(x(idx)) + s(idx)./(x(idx).^3) ;
    end
end

if nargout == 3
    if length(s)==1
        D2ldens(idx) =  (nu+1)./(x(idx).^2) - 3*s(idx)./(x(idx).^4) ;
    else
        D2ldens(idx) =  (nu(idx)+1)./(x(idx).^2) - 3*s(idx)./(x(idx).^4) ;
    end
end