File: marginal_density.m

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (210 lines) | stat: -rw-r--r-- 8,238 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
function [marginal,oo_] = marginal_density(M_, options_, estim_params_, oo_, bayestopt_)
% function marginal = marginal_density()
% Computes the marginal density
%
% INPUTS
%   options_         [structure]
%   estim_params_    [structure]
%   M_               [structure]
%   oo_              [structure]
%
% OUTPUTS
%   marginal:        [double]     marginal density (modified harmonic mean)
%   oo_              [structure]
%
% SPECIAL REQUIREMENTS
%    none

% Copyright (C) 2005-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.


npar = estim_params_.np+estim_params_.nvn+estim_params_.ncx+estim_params_.ncn+estim_params_.nvx;
nblck = options_.mh_nblck;

MetropolisFolder = CheckPath('metropolis',M_.dname);
ModelName = M_.fname;
BaseName = [MetropolisFolder filesep ModelName];

load_last_mh_history_file(MetropolisFolder, ModelName);

FirstMhFile = record.KeepedDraws.FirstMhFile;
FirstLine = record.KeepedDraws.FirstLine; ifil = FirstLine;
TotalNumberOfMhFiles = sum(record.MhDraws(:,2));
TotalNumberOfMhDraws = sum(record.MhDraws(:,1));
MAX_nruns = ceil(options_.MaxNumberOfBytes/(npar+2)/8);
TODROP = floor(options_.mh_drop*TotalNumberOfMhDraws);

fprintf('Estimation::marginal density: I''m computing the posterior mean and covariance... ');
[posterior_mean,posterior_covariance,posterior_mode,posterior_kernel_at_the_mode] = compute_mh_covariance_matrix();

MU = transpose(posterior_mean);
SIGMA = posterior_covariance;
lpost_mode = posterior_kernel_at_the_mode;
xparam1 = posterior_mean;
hh = inv(SIGMA);
fprintf(' Done!\n');
if ~isfield(oo_,'posterior_mode') || (options_.mh_replic && isequal(options_.posterior_sampler_options.posterior_sampling_method,'slice'))
    oo_=fill_mh_mode(posterior_mode',NaN(npar,1),M_,options_,estim_params_,bayestopt_,oo_,'posterior');
end

% save the posterior mean and the inverse of the covariance matrix
% (usefull if the user wants to perform some computations using
% the posterior mean instead of the posterior mode ==> ).
parameter_names = bayestopt_.name;
save([M_.fname '_mean.mat'],'xparam1','hh','parameter_names','SIGMA');

fprintf('Estimation::marginal density: I''m computing the posterior log marginal density (modified harmonic mean)... ');
logdetSIGMA = log(det(SIGMA));
invSIGMA = hh;
marginal = zeros(9,2);
linee = 0;
check_coverage = 1;
increase = 1;
while check_coverage
    for p = 0.1:0.1:0.9
        critval = chi2inv(p,npar);
        ifil = FirstLine;
        tmp = 0;
        for n = FirstMhFile:TotalNumberOfMhFiles
            for b=1:nblck
                load([ BaseName '_mh' int2str(n) '_blck' int2str(b) '.mat'],'x2','logpo2');
                EndOfFile = size(x2,1);
                for i = ifil:EndOfFile
                    deviation  = ((x2(i,:)-MU)*invSIGMA*(x2(i,:)-MU)')/increase;
                    if deviation <= critval
                        lftheta = -log(p)-(npar*log(2*pi)+(npar*log(increase)+logdetSIGMA)+deviation)/2;
                        tmp = tmp + exp(lftheta - logpo2(i) + lpost_mode);
                    end
                end
            end
            ifil = 1;
        end
        linee = linee + 1;
        warning_old_state = warning;
        warning off;
        marginal(linee,:) = [p, lpost_mode-log(tmp/((TotalNumberOfMhDraws-TODROP)*nblck))];
        warning(warning_old_state);
    end
    if abs((marginal(9,2)-marginal(1,2))/marginal(9,2)) > 0.01 || isinf(marginal(1,2))
        fprintf('\n')
        if increase == 1
            disp('Estimation::marginal density: The support of the weighting density function is not large enough...')
            disp('Estimation::marginal density: I increase the variance of this distribution.')
            increase = 1.2*increase;
            linee    = 0;
        else
            disp('Estimation::marginal density: Let me try again.')
            increase = 1.2*increase;
            linee    = 0;
            if increase > 20
                check_coverage = 0;
                clear invSIGMA detSIGMA increase;
                disp('Estimation::marginal density: There''s probably a problem with the modified harmonic mean estimator.')
            end
        end
    else
        check_coverage = 0;
        clear invSIGMA detSIGMA increase;
        fprintf('Done!\n')
    end
end

oo_.MarginalDensity.ModifiedHarmonicMean = mean(marginal(:,2));

return

function oo_=fill_mh_mode(xparam1,stdh,M_,options_,estim_params_,bayestopt_,oo_, field_name)
%function oo_=fill_mh_mode(xparam1,stdh,M_,options_,estim_params_,bayestopt_,oo_, field_name)
%
% INPUTS
%   o xparam1       [double]   (p*1) vector of estimate parameters.
%   o stdh          [double]   (p*1) vector of estimate parameters.
%   o M_                        Matlab's structure describing the Model (initialized by dynare, see @ref{M_}).
%   o estim_params_             Matlab's structure describing the estimated_parameters (initialized by dynare, see @ref{estim_params_}).
%   o options_                  Matlab's structure describing the options (initialized by dynare, see @ref{options_}).
%   o bayestopt_                Matlab's structure describing the priors (initialized by dynare, see @ref{bayesopt_}).
%   o oo_                       Matlab's structure gathering the results (initialized by dynare, see @ref{oo_}).
%
% OUTPUTS
%   o oo_                       Matlab's structure gathering the results
%
% SPECIAL REQUIREMENTS
%   None.


nvx = estim_params_.nvx;  % Variance of the structural innovations (number of parameters).
nvn = estim_params_.nvn;  % Variance of the measurement innovations (number of parameters).
ncx = estim_params_.ncx;  % Covariance of the structural innovations (number of parameters).
ncn = estim_params_.ncn;  % Covariance of the measurement innovations (number of parameters).
np  = estim_params_.np ;  % Number of deep parameters.
nx  = nvx+nvn+ncx+ncn+np; % Total number of parameters to be estimated.

if np
    ip = nvx+nvn+ncx+ncn+1;
    for i=1:np
        name = bayestopt_.name{ip};
        eval(['oo_.' field_name '_mode.parameters.' name ' = xparam1(ip);']);
        eval(['oo_.' field_name '_std_at_mode.parameters.' name ' = stdh(ip);']);
        ip = ip+1;
    end
end
if nvx
    ip = 1;
    for i=1:nvx
        k = estim_params_.var_exo(i,1);
        name = deblank(M_.exo_names(k,:));
        eval(['oo_.' field_name '_mode.shocks_std.' name ' = xparam1(ip);']);
        eval(['oo_.' field_name '_std_at_mode.shocks_std.' name ' = stdh(ip);']);
        ip = ip+1;
    end
end
if nvn
    ip = nvx+1;
    for i=1:nvn
        name = options_.varobs{estim_params_.nvn_observable_correspondence(i,1)};
        eval(['oo_.' field_name '_mode.measurement_errors_std.' name ' = xparam1(ip);']);
        eval(['oo_.' field_name '_std_at_mode.measurement_errors_std.' name ' = stdh(ip);']);
        ip = ip+1;
    end
end

if ncx
    ip = nvx+nvn+1;
    for i=1:ncx
        k1 = estim_params_.corrx(i,1);
        k2 = estim_params_.corrx(i,2);
        NAME = [deblank(M_.exo_names(k1,:)) '_' deblank(M_.exo_names(k2,:))];
        eval(['oo_.' field_name '_mode.shocks_corr.' NAME ' = xparam1(ip);']);
        eval(['oo_.' field_name '_std_at_mode.shocks_corr.' NAME ' = stdh(ip);']);
        ip = ip+1;
    end
end

if ncn
    ip = nvx+nvn+ncx+1;
    for i=1:ncn
        k1 = estim_params_.corrn(i,1);
        k2 = estim_params_.corrn(i,2);
        NAME = [deblank(M_.endo_names(k1,:)) '_' deblank(M_.endo_names(k2,:))];
        eval(['oo_.' field_name '_mode.measurement_errors_corr.' NAME ' = xparam1(ip);']);
        eval(['oo_.' field_name '_std_at_mode.measurement_errors_corr.' NAME ' = stdh(ip);']);
        ip = ip+1;
    end
end

return