1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
function ms_mardd(options_)
% Applies to both linear and exclusion restrictions.
% (1) Marginal likelihood function p(Y) for constant structural VAR models, using Chib (1995)'s ``Marginal Likelihood from the Gibbs Output'' in JASA.
% (2) Conditional likelihood function f(Y|A0, A+) on the ML estimate for constant exclusion-identified models.
% See Forecast (II) pp.67-80.
%
% Tao Zha, September 1999. Quick revisions, May 2003. Final revision, September 2004.
% Copyright (C) 2011-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
msstart2 % start the program in which everyhting is initialized through msstart2.m
if ~options_.ms.indxestima
warning(' ')
disp('You must set IxEstima=1 in msstart to run this program')
disp('Press ctrl-c to abort now')
pause
end
A0xhat = zeros(size(A0hat));
Apxhat = zeros(size(Aphat));
if (0)
%Robustness check to see if the same result is obtained with the purterbation of the parameters.
for k=1:nvar
bk = Uiconst{k}'*A0hat(:,k);
gk = Viconst{k}'*Aphat(:,k);
A0xhat(:,k) = Uiconst{k}*(bk + 5.2*randn(size(bk))); % Perturbing the posterior estimate.
Apxhat(:,k) = Viconst{k}*(gk + 5.2*randn(size(gk))); % Perturbing the posterior estimate.
end
else
%At the posterior estimate.
A0xhat = A0hat; % ML estimate of A0
Apxhat = Aphat; % ML estimate of A+
end
%--- Rename variables.
YatYa = yty;
XatYa = xty;
ytx = xty';
YatXa = ytx;
XatXa = xtx;
%--------- The log value of p(A0,A+) at some point such as the peak ----------
vlog_a0p = 0;
Yexpt=0; % exponential term for Y in p(Y|A0,A+) at some point such as the peak
Apexpt=0.0; % 0.0 because we have chosen posterior estimate of A+ as A+*. Exponential term for A+ conditional on A0 and Y
%======= Computing the log prior pdf of a0a+ and the exponential term for Y in p(Y|A0,A+).
for k=1:nvar
a0k = A0xhat(:,k); % meaningful parameters in the kth equation.
apk = Apxhat(:,k); % meaningful parameters in the kth equation.
%--- Prior settings.
S0bar = H0invtld{k}; %See Claim 2 on p.69b.
Spbar = Hpinvtld{k};
bk = Uiconst{k}'*a0k; % free parameters in the kth equation.
gk = Viconst{k}'*apk; % free parameters in the kth equation.
gbark = Ptld{k}*bk; % bar: prior
%--- The exponential term for Y in p(Y|A0,A+)
Yexpt = Yexpt - 0.5*(a0k'*YatYa*a0k - 2*apk'*XatYa*a0k + apk'*XatXa*apk);
%--- The log prior pdf.
vlog_a0p = vlog_a0p - 0.5*(size(Uiconst{k},2)+size(Viconst{k},2))*log(2*pi) + 0.5*log(abs(det(S0bar))) + ...
0.5*log(abs(det(Spbar))) - 0.5*(bk'*S0bar*bk+(gk-gbark)'*Spbar*(gk-gbark));
%--- For p(A+|Y,a0) only.
tmpd = gk - Pmat{k}*bk;
Apexpt = Apexpt - 0.5*tmpd'*(Hpinv{k}*tmpd);
end
vlog_a0p
%--------- The log value of p(Y|A0,A+) at some point such as the peak. ----------
%--------- Note that logMarLHres is the same as vlog_Y_a, just to double check. ----------
vlog_Y_a = -0.5*nvar*fss*log(2*pi) + fss*log(abs(det(A0xhat))) + Yexpt
% a: given a0 and a+
logMarLHres = 0; % Initialize log of the marginal likelihood (restricted or constant parameters).
for ki=1:fss %ndobs+1:fss % Forward recursion to get the marginal likelihood. See F on p.19 and pp. 48-49.
%---- Restricted log marginal likelihood function (constant parameters).
[A0l,A0u] = lu(A0xhat);
ada = sum(log(abs(diag(A0u)))); % log|A0|
termexp = y(ki,:)*A0xhat - phi(ki,:)*Apxhat; % 1-by-nvar
logMarLHres = logMarLHres - (0.5*nvar)*log(2*pi) + ada - 0.5*termexp*termexp'; % log value
end
logMarLHres
%--------- The log value of p(A+|Y,A0) at some point such as the peak ----------
totparsp = 0.0;
tmpd = 0.0;
for k=1:nvar
totparsp = totparsp + size(Viconst{k},2);
tmpd = tmpd + 0.5*log(abs(det(Hpinv{k})));
end
vlog_ap_Ya0 = -0.5*totparsp*log(2*pi) + tmpd + Apexpt;
%===================================
% Compute p(a0,k|Y,ao) at some point such as the peak (in this situation, we simply
% generate results from the original Gibbs sampler). See FORECAST (2) pp.70-71
%===================================
%--- Global set up for Gibbs.
[Tinv,UT] = fn_gibbsrvar_setup(H0inv, Uiconst, Hpinv, Pmat, Viconst, nvar, fss);
%
vlog_a0_Yao = zeros(nvar,1);
% the log value of p(a0k|Y,ao) where ao: other a's at some point such as the peak of ONLY some a0's
vlog=zeros(ndraws2,1);
for k=1:nvar
bk = Uiconst{k}'*A0xhat(:,k);
indx_ks=[k:nvar]; % the columns that exclude 1-(k-1)th columns
A0gbs0 = A0hat; % starting at some point such as the peak
nk = n0(k);
if k<nvar
%--------- The 1st set of draws to be tossed away. ------------------
for draws = 1:ndraws1
if ~mod(draws,nbuffer)
skipline()
disp(sprintf('The %dth column or equation in A0 with %d 1st tossed-away draws in Gibbs',k,draws))
end
A0gbs1 = fn_gibbsrvar(A0gbs0,UT,nvar,fss,n0,indx_ks);
A0gbs0=A0gbs1; % repeat the Gibbs sampling
end
%--------- The 2nd set of draws to be used. ------------------
for draws = 1:ndraws2
if ~mod(draws,nbuffer)
skipline()
disp(sprintf('The %dth column or equation in A0 with %d usable draws in Gibbs',k,draws))
end
[A0gbs1, Wcell] = fn_gibbsrvar(A0gbs0,UT,nvar,fss,n0,indx_ks);
%------ See p.71, Forecast (II).
%------ Computing p(a0_k|Y,a_others) at some point such as the peak along the dimensions of indx_ks.
Vk = Tinv{k}\Wcell{k}; %V_k on p.71 of Forecast (II).
gbeta = Vk\bk; % inv(V_k)*b_k on p.71 of Forecast (II) where alpha_k = b_k in our notation.
[Vtq,Vtr]=qr(Vk',0); %To get inv(V_k)'*inv(V_k) in (*) on p.71 of Forecast (II).
%
vlog(draws) = 0.5*(fss+nk)*log(fss)-log(abs(det(Vk)))-0.5*(nk-1)*log(2*pi)-...
0.5*(fss+1)*log(2)-gammaln(0.5*(fss+1))+fss*log(abs(gbeta(1)))-...
0.5*fss*bk'*(Vtr\(Vtr'\bk));
A0gbs0=A0gbs1; % repeat the Gibbs sampling
end
vlogm=max(vlog);
qlog=vlog-vlogm;
vlogxhat=vlogm-log(ndraws2)+log(sum(exp(qlog)));
vlog_a0_Yao(k) = vlogxhat;
% The log value of p(a0_k|Y,a_others) where a_others: other a's at some point such as the peak of ONLY some a0's
else
skipline()
disp(sprintf('The last(6th) column or equation in A0 with no Gibbs draws'))
[A0gbs1, Wcell] = fn_gibbsrvar(A0gbs0,UT,nvar,fss,n0,indx_ks)
%------ See p.71, Forecast (II).
%------ Computing p(a0_k|Y,a_others) at some point such as the peak along the dimensions of indx_ks.
Vk = Tinv{k}\Wcell{k}; %V_k on p.71 of Forecast (II).
gbeta = Vk\bk; % inv(V_k)*b_k on p.71 of Forecast (II) where alpha_k = b_k in our notation.
[Vtq,Vtr]=qr(Vk',0); %To get inv(V_k)'*inv(V_k) in (*) on p.71 of Forecast (II).
%
vloglast = 0.5*(fss+nk)*log(fss)-log(abs(det(Vk)))-0.5*(nk-1)*log(2*pi)-...
0.5*(fss+1)*log(2)-gammaln(0.5*(fss+1))+fss*log(abs(gbeta(1)))-...
0.5*fss*bk'*(Vtr\(Vtr'\bk));
vlog_a0_Yao(k) = vloglast;
end
end
ndraws2
disp('Prior pdf -- log(p(a0hat, a+hat)):');
vlog_a0p
disp('LH pdf -- log(p(Y|a0hat, a+hat)):');
vlog_Y_a
disp('Posterior Kernal -- logp(ahat) + logp(Y|ahat):');
vlog_Y_a + vlog_a0p
disp('Posterior pdf -- log(p(a0_i_hat|a0_other_hat, Y)):');
vlog_a0_Yao
disp('Posterior pdf -- log(p(aphat|a0hat, Y)):');
vlog_ap_Ya0
%--------- The value of marginal density p(Y) ----------
skipline()
disp('************ Marginal Likelihood of Y or Marginal Data Density: ************');
vlogY = vlog_a0p+vlog_Y_a-sum(vlog_a0_Yao)-vlog_ap_Ya0
|