1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
function [xparam1, hh, gg, fval, igg, hess_info] = newrat(func0, x, bounds, analytic_derivation, ftol0, nit, flagg, Verbose, Save_files, hess_info, varargin)
% [xparam1, hh, gg, fval, igg, hess_info] = newrat(func0, x, bounds, analytic_derivation, ftol0, nit, flagg, Verbose, Save_files, hess_info, varargin)
%
% Optimiser with outer product gradient and with sequences of univariate steps
% uses Chris Sims subroutine for line search
%
% Inputs:
% - func0 name of the function that also outputs the single contributions at times t=1,...,T
% of the log-likelihood to compute outer product gradient
% - x starting guess
% - analytic_derivation 1 if analytic derivatives, 0 otherwise
% - ftol0 termination criterion for function change
% - nit maximum number of iterations
% - flagg Indicator how to compute final Hessian (In each iteration, Hessian is computed with outer product gradient)
% 0: final Hessian computed with outer product gradient
% 1: final 'mixed' Hessian: diagonal elements computed with
% numerical second order derivatives with correlation structure
% as from outer product gradient
% 2: full numerical Hessian
% - Verbose 1 if explicit output is requested
% - Save_files 1 if intermediate output is to be saved
% - hess_info structure storing the step sizes for
% computation of Hessian
% - varargin other inputs:
% varargin{1} --> DynareDataset
% varargin{2} --> DatasetInfo
% varargin{3} --> DynareOptions
% varargin{4} --> Model
% varargin{5} --> EstimatedParameters
% varargin{6} --> BayesInfo
% varargin{7} --> Bounds
% varargin{8} --> DynareResults
%
% Outputs
% - xparam1 parameter vector at optimum
% - hh hessian
% - gg gradient
% - fval function value
% - igg inverted outer product hessian
% - hess_info structure with updated step length
% Copyright (C) 2004-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% initialize variable penalty
penalty = 1e8;
icount=0;
nx=length(x);
xparam1=x;
%ftol0=1.e-6;
htol_base = max(1.e-7, ftol0);
flagit=0; % mode of computation of hessian in each iteration
ftol=ftol0;
gtol=1.e-3;
htol=htol_base;
htol0=htol_base;
gibbstol=length(varargin{6}.pshape)/50; %25;
% force fcn, grad to function handle
if ischar(func0)
func0 = str2func(func0);
end
% func0 = str2func([func2str(func0),'_hh']);
% func0 = func0;
[fval0,exit_flag,gg,hh]=penalty_objective_function(x,func0,penalty,varargin{:});
fval=fval0;
% initialize mr_gstep and mr_hessian
outer_product_gradient=1;
if isempty(hh)
[dum, gg, htol0, igg, hhg, h1, hess_info]=mr_hessian(x,func0,penalty,flagit,htol,hess_info,varargin{:});
if isempty(dum)
outer_product_gradient=0;
igg = 1e-4*eye(nx);
else
hh0 = reshape(dum,nx,nx);
hh=hhg;
if min(eig(hh0))<0
hh0=hhg; %generalized_cholesky(hh0);
elseif flagit==2
hh=hh0;
igg=inv(hh);
end
end
if max(htol0)>htol
skipline()
disp_verbose('Numerical noise in the likelihood',Verbose)
disp_verbose('Tolerance has to be relaxed',Verbose)
skipline()
end
else
hh0=hh;
hhg=hh;
igg=inv(hh);
h1=[];
end
H = igg;
disp_verbose(['Gradient norm ',num2str(norm(gg))],Verbose)
ee=eig(hh);
disp_verbose(['Minimum Hessian eigenvalue ',num2str(min(ee))],Verbose)
disp_verbose(['Maximum Hessian eigenvalue ',num2str(max(ee))],Verbose)
g=gg;
check=0;
if max(eig(hh))<0
disp_verbose('Negative definite Hessian! Local maximum!',Verbose)
pause
end
if Save_files
save('m1.mat','x','hh','g','hhg','igg','fval0')
end
igrad=1;
igibbs=1;
inx=eye(nx);
jit=0;
nig=[];
ig=ones(nx,1);
ggx=zeros(nx,1);
while norm(gg)>gtol && check==0 && jit<nit
jit=jit+1;
tic1 = tic;
icount=icount+1;
penalty = fval0(icount);
disp_verbose([' '],Verbose)
disp_verbose(['Iteration ',num2str(icount)],Verbose)
[fval,x0,fc,retcode] = csminit1(func0,xparam1,penalty,fval0(icount),gg,0,H,Verbose,varargin{:});
if igrad
[fval1,x01,fc,retcode1] = csminit1(func0,x0,penalty,fval,gg,0,inx,Verbose,varargin{:});
if (fval-fval1)>1
disp_verbose('Gradient step!!',Verbose)
else
igrad=0;
end
fval=fval1;
x0=x01;
end
if length(find(ig))<nx
ggx=ggx*0;
ggx(find(ig))=gg(find(ig));
if analytic_derivation || ~outer_product_gradient
hhx=hh;
else
hhx = reshape(dum,nx,nx);
end
iggx=eye(length(gg));
iggx(find(ig),find(ig)) = inv( hhx(find(ig),find(ig)) );
[fvala,x0,fc,retcode] = csminit1(func0,x0,penalty,fval,ggx,0,iggx,Verbose,varargin{:});
end
x0 = check_bounds(x0,bounds);
[fvala, x0, ig] = mr_gstep(h1,x0,bounds,func0,penalty,htol0,Verbose,Save_files,varargin{:});
x0 = check_bounds(x0,bounds);
nig=[nig ig];
disp_verbose('Sequence of univariate steps!!',Verbose)
fval=fvala;
if (fval0(icount)-fval)<ftol && flagit==0
disp_verbose('Try diagonal Hessian',Verbose)
ihh=diag(1./(diag(hhg)));
[fval2,x0,fc,retcode2] = csminit1(func0,x0,penalty,fval,gg,0,ihh,Verbose,varargin{:});
x0 = check_bounds(x0,bounds);
if (fval-fval2)>=ftol
disp_verbose('Diagonal Hessian successful',Verbose)
end
fval=fval2;
end
if (fval0(icount)-fval)<ftol && flagit==0
disp_verbose('Try gradient direction',Verbose)
ihh0=inx.*1.e-4;
[fval3,x0,fc,retcode3] = csminit1(func0,x0,penalty,fval,gg,0,ihh0,Verbose,varargin{:});
x0 = check_bounds(x0,bounds);
if (fval-fval3)>=ftol
disp_verbose('Gradient direction successful',Verbose)
end
fval=fval3;
end
xparam1=x0;
x(:,icount+1)=xparam1;
fval0(icount+1)=fval;
if (fval0(icount)-fval)<ftol
disp_verbose('No further improvement is possible!',Verbose)
check=1;
if analytic_derivation
[fvalx,exit_flag,gg,hh]=penalty_objective_function(xparam1,func0,penalty,varargin{:});
hhg=hh;
H = inv(hh);
else
if flagit==2
hh=hh0;
elseif flagg>0
[dum, gg, htol0, igg, hhg, h1, hess_info]=mr_hessian(xparam1,func0,penalty,flagg,ftol0,hess_info,varargin{:});
if flagg==2
hh = reshape(dum,nx,nx);
ee=eig(hh);
if min(ee)<0
hh=hhg;
end
else
hh=hhg;
end
end
end
disp_verbose(['Actual dxnorm ',num2str(norm(x(:,end)-x(:,end-1)))],Verbose)
disp_verbose(['FVAL ',num2str(fval)],Verbose)
disp_verbose(['Improvement ',num2str(fval0(icount)-fval)],Verbose)
disp_verbose(['Ftol ',num2str(ftol)],Verbose)
disp_verbose(['Htol ',num2str(max(htol0))],Verbose)
disp_verbose(['Gradient norm ',num2str(norm(gg))],Verbose)
ee=eig(hh);
disp_verbose(['Minimum Hessian eigenvalue ',num2str(min(ee))],Verbose)
disp_verbose(['Maximum Hessian eigenvalue ',num2str(max(ee))],Verbose)
g(:,icount+1)=gg;
else
df = fval0(icount)-fval;
disp_verbose(['Actual dxnorm ',num2str(norm(x(:,end)-x(:,end-1)))],Verbose)
disp_verbose(['FVAL ',num2str(fval)],Verbose)
disp_verbose(['Improvement ',num2str(df)],Verbose)
disp_verbose(['Ftol ',num2str(ftol)],Verbose)
disp_verbose(['Htol ',num2str(max(htol0))],Verbose)
htol=htol_base;
if norm(x(:,icount)-xparam1)>1.e-12 && analytic_derivation==0
try
if Save_files
save('m1.mat','x','fval0','nig','-append')
end
catch
if Save_files
save('m1.mat','x','fval0','nig')
end
end
[dum, gg, htol0, igg, hhg, h1, hess_info]=mr_hessian(xparam1,func0,penalty,flagit,htol,hess_info,varargin{:});
if isempty(dum)
outer_product_gradient=0;
end
if max(htol0)>htol
skipline()
disp_verbose('Numerical noise in the likelihood',Verbose)
disp_verbose('Tolerance has to be relaxed',Verbose)
skipline()
end
if ~outer_product_gradient
H = bfgsi1(H,gg-g(:,icount),xparam1-x(:,icount),Verbose,Save_files);
hh=inv(H);
hhg=hh;
else
hh0 = reshape(dum,nx,nx);
hh=hhg;
if flagit==2
if min(eig(hh0))<=0
hh0=hhg; %generalized_cholesky(hh0);
else
hh=hh0;
igg=inv(hh);
end
end
H = igg;
end
elseif analytic_derivation
[fvalx,exit_flag,gg,hh]=penalty_objective_function(xparam1,func0,penalty,varargin{:});
hhg=hh;
H = inv(hh);
end
disp_verbose(['Gradient norm ',num2str(norm(gg))],Verbose)
ee=eig(hh);
disp_verbose(['Minimum Hessian eigenvalue ',num2str(min(ee))],Verbose)
disp_verbose(['Maximum Hessian eigenvalue ',num2str(max(ee))],Verbose)
if max(eig(hh))<0
disp_verbose('Negative definite Hessian! Local maximum!',Verbose)
pause(1)
end
t=toc(tic1);
disp_verbose(['Elapsed time for iteration ',num2str(t),' s.'],Verbose)
g(:,icount+1)=gg;
if Save_files
save('m1.mat','x','hh','g','hhg','igg','fval0','nig','H')
end
end
end
if Save_files
save('m1.mat','x','hh','g','hhg','igg','fval0','nig')
end
if ftol>ftol0
skipline()
disp_verbose('Numerical noise in the likelihood',Verbose)
disp_verbose('Tolerance had to be relaxed',Verbose)
skipline()
end
if jit==nit
skipline()
disp_verbose('Maximum number of iterations reached',Verbose)
skipline()
end
if norm(gg)<=gtol
disp_verbose(['Estimation ended:'],Verbose)
disp_verbose(['Gradient norm < ', num2str(gtol)],Verbose)
end
if check==1
disp_verbose(['Estimation successful.'],Verbose)
end
return
function x = check_bounds(x,bounds)
inx = find(x>=bounds(:,2));
if ~isempty(inx)
x(inx) = bounds(inx,2)-eps;
end
inx = find(x<=bounds(:,1));
if ~isempty(inx)
x(inx) = bounds(inx,1)+eps;
end
|