File: newrat.m

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (331 lines) | stat: -rw-r--r-- 11,814 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
function [xparam1, hh, gg, fval, igg, hess_info] = newrat(func0, x, bounds, analytic_derivation, ftol0, nit, flagg, Verbose, Save_files, hess_info, varargin)
%  [xparam1, hh, gg, fval, igg, hess_info] = newrat(func0, x, bounds, analytic_derivation, ftol0, nit, flagg, Verbose, Save_files, hess_info, varargin)
%
%  Optimiser with outer product gradient and with sequences of univariate steps
%  uses Chris Sims subroutine for line search
%
%  Inputs:
%  - func0                  name of the function that also outputs the single contributions at times t=1,...,T
%                           of the log-likelihood to compute outer product gradient
%  - x                      starting guess
%  - analytic_derivation    1 if analytic derivatives, 0 otherwise
%  - ftol0                  termination criterion for function change
%  - nit                    maximum number of iterations
%  - flagg                  Indicator how to compute final Hessian (In each iteration, Hessian is computed with outer product gradient)
%                           0: final Hessian computed with outer product gradient
%                           1: final 'mixed' Hessian: diagonal elements computed with
%                               numerical second order derivatives with correlation structure
%                               as from outer product gradient
%                           2: full numerical Hessian
%  - Verbose                1 if explicit output is requested
%  - Save_files             1 if intermediate output is to be saved
%  - hess_info              structure storing the step sizes for
%                           computation of Hessian
%  - varargin               other inputs:
%                           varargin{1} --> DynareDataset
%                           varargin{2} --> DatasetInfo
%                           varargin{3} --> DynareOptions
%                           varargin{4} --> Model
%                           varargin{5} --> EstimatedParameters
%                           varargin{6} --> BayesInfo
%                           varargin{7} --> Bounds
%                           varargin{8} --> DynareResults
%
% Outputs
% - xparam1                 parameter vector at optimum
% - hh                      hessian
% - gg                      gradient
% - fval                    function value
% - igg                     inverted outer product hessian
% - hess_info               structure with updated step length

% Copyright (C) 2004-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

% initialize variable penalty
penalty = 1e8;

icount=0;
nx=length(x);
xparam1=x;
%ftol0=1.e-6;
htol_base = max(1.e-7, ftol0);
flagit=0;  % mode of computation of hessian in each iteration
ftol=ftol0;
gtol=1.e-3;
htol=htol_base;
htol0=htol_base;
gibbstol=length(varargin{6}.pshape)/50; %25;

% force fcn, grad to function handle
if ischar(func0)
    func0 = str2func(func0);
end

% func0 = str2func([func2str(func0),'_hh']);
% func0 = func0;
[fval0,exit_flag,gg,hh]=penalty_objective_function(x,func0,penalty,varargin{:});
fval=fval0;

% initialize mr_gstep and mr_hessian

outer_product_gradient=1;
if isempty(hh)
    [dum, gg, htol0, igg, hhg, h1, hess_info]=mr_hessian(x,func0,penalty,flagit,htol,hess_info,varargin{:});
    if isempty(dum)
        outer_product_gradient=0;
        igg = 1e-4*eye(nx);
    else
        hh0 = reshape(dum,nx,nx);
        hh=hhg;
        if min(eig(hh0))<0
            hh0=hhg; %generalized_cholesky(hh0);
        elseif flagit==2
            hh=hh0;
            igg=inv(hh);
        end
    end
    if max(htol0)>htol
        skipline()
        disp_verbose('Numerical noise in the likelihood',Verbose)
        disp_verbose('Tolerance has to be relaxed',Verbose)
        skipline()
    end
else
    hh0=hh;
    hhg=hh;
    igg=inv(hh);
    h1=[];
end
H = igg;
disp_verbose(['Gradient norm ',num2str(norm(gg))],Verbose)
ee=eig(hh);
disp_verbose(['Minimum Hessian eigenvalue ',num2str(min(ee))],Verbose)
disp_verbose(['Maximum Hessian eigenvalue ',num2str(max(ee))],Verbose)
g=gg;
check=0;
if max(eig(hh))<0
    disp_verbose('Negative definite Hessian! Local maximum!',Verbose)
    pause
end
if Save_files
    save('m1.mat','x','hh','g','hhg','igg','fval0')
end

igrad=1;
igibbs=1;
inx=eye(nx);
jit=0;
nig=[];
ig=ones(nx,1);
ggx=zeros(nx,1);
while norm(gg)>gtol && check==0 && jit<nit
    jit=jit+1;
    tic1 = tic;
    icount=icount+1;
    penalty = fval0(icount);
    disp_verbose([' '],Verbose)
    disp_verbose(['Iteration ',num2str(icount)],Verbose)
    [fval,x0,fc,retcode] = csminit1(func0,xparam1,penalty,fval0(icount),gg,0,H,Verbose,varargin{:});
    if igrad
        [fval1,x01,fc,retcode1] = csminit1(func0,x0,penalty,fval,gg,0,inx,Verbose,varargin{:});
        if (fval-fval1)>1
            disp_verbose('Gradient step!!',Verbose)
        else
            igrad=0;
        end
        fval=fval1;
        x0=x01;
    end
    if length(find(ig))<nx
        ggx=ggx*0;
        ggx(find(ig))=gg(find(ig));
        if analytic_derivation || ~outer_product_gradient
            hhx=hh;
        else
            hhx = reshape(dum,nx,nx);
        end
        iggx=eye(length(gg));
        iggx(find(ig),find(ig)) = inv( hhx(find(ig),find(ig)) );
        [fvala,x0,fc,retcode] = csminit1(func0,x0,penalty,fval,ggx,0,iggx,Verbose,varargin{:});
    end
    x0 = check_bounds(x0,bounds);
    [fvala, x0, ig] = mr_gstep(h1,x0,bounds,func0,penalty,htol0,Verbose,Save_files,varargin{:});
    x0 = check_bounds(x0,bounds);
    nig=[nig ig];
    disp_verbose('Sequence of univariate steps!!',Verbose)
    fval=fvala;
    if (fval0(icount)-fval)<ftol && flagit==0
        disp_verbose('Try diagonal Hessian',Verbose)
        ihh=diag(1./(diag(hhg)));
        [fval2,x0,fc,retcode2] = csminit1(func0,x0,penalty,fval,gg,0,ihh,Verbose,varargin{:});
        x0 = check_bounds(x0,bounds);
        if (fval-fval2)>=ftol
            disp_verbose('Diagonal Hessian successful',Verbose)
        end
        fval=fval2;
    end
    if (fval0(icount)-fval)<ftol && flagit==0
        disp_verbose('Try gradient direction',Verbose)
        ihh0=inx.*1.e-4;
        [fval3,x0,fc,retcode3] = csminit1(func0,x0,penalty,fval,gg,0,ihh0,Verbose,varargin{:});
        x0 = check_bounds(x0,bounds);
        if (fval-fval3)>=ftol
            disp_verbose('Gradient direction successful',Verbose)
        end
        fval=fval3;
    end
    xparam1=x0;
    x(:,icount+1)=xparam1;
    fval0(icount+1)=fval;
    if (fval0(icount)-fval)<ftol
        disp_verbose('No further improvement is possible!',Verbose)
        check=1;
        if analytic_derivation
            [fvalx,exit_flag,gg,hh]=penalty_objective_function(xparam1,func0,penalty,varargin{:});
            hhg=hh;
            H = inv(hh);
        else
            if flagit==2
                hh=hh0;
            elseif flagg>0
                [dum, gg, htol0, igg, hhg, h1, hess_info]=mr_hessian(xparam1,func0,penalty,flagg,ftol0,hess_info,varargin{:});
                if flagg==2
                    hh = reshape(dum,nx,nx);
                    ee=eig(hh);
                    if min(ee)<0
                        hh=hhg;
                    end
                else
                    hh=hhg;
                end
            end
        end
        disp_verbose(['Actual dxnorm ',num2str(norm(x(:,end)-x(:,end-1)))],Verbose)
        disp_verbose(['FVAL          ',num2str(fval)],Verbose)
        disp_verbose(['Improvement   ',num2str(fval0(icount)-fval)],Verbose)
        disp_verbose(['Ftol          ',num2str(ftol)],Verbose)
        disp_verbose(['Htol          ',num2str(max(htol0))],Verbose)
        disp_verbose(['Gradient norm  ',num2str(norm(gg))],Verbose)
        ee=eig(hh);
        disp_verbose(['Minimum Hessian eigenvalue ',num2str(min(ee))],Verbose)
        disp_verbose(['Maximum Hessian eigenvalue ',num2str(max(ee))],Verbose)
        g(:,icount+1)=gg;
    else
        df = fval0(icount)-fval;
        disp_verbose(['Actual dxnorm ',num2str(norm(x(:,end)-x(:,end-1)))],Verbose)
        disp_verbose(['FVAL          ',num2str(fval)],Verbose)
        disp_verbose(['Improvement   ',num2str(df)],Verbose)
        disp_verbose(['Ftol          ',num2str(ftol)],Verbose)
        disp_verbose(['Htol          ',num2str(max(htol0))],Verbose)
        htol=htol_base;
        if norm(x(:,icount)-xparam1)>1.e-12 && analytic_derivation==0
            try
                if Save_files
                    save('m1.mat','x','fval0','nig','-append')
                end
            catch
                if Save_files
                    save('m1.mat','x','fval0','nig')
                end
            end
            [dum, gg, htol0, igg, hhg, h1, hess_info]=mr_hessian(xparam1,func0,penalty,flagit,htol,hess_info,varargin{:});
            if isempty(dum)
                outer_product_gradient=0;
            end
            if max(htol0)>htol
                skipline()
                disp_verbose('Numerical noise in the likelihood',Verbose)
                disp_verbose('Tolerance has to be relaxed',Verbose)
                skipline()
            end
            if ~outer_product_gradient
                H = bfgsi1(H,gg-g(:,icount),xparam1-x(:,icount),Verbose,Save_files);
                hh=inv(H);
                hhg=hh;
            else
                hh0 = reshape(dum,nx,nx);
                hh=hhg;
                if flagit==2
                    if min(eig(hh0))<=0
                        hh0=hhg; %generalized_cholesky(hh0);
                    else
                        hh=hh0;
                        igg=inv(hh);
                    end
                end
                H = igg;
            end
        elseif analytic_derivation
            [fvalx,exit_flag,gg,hh]=penalty_objective_function(xparam1,func0,penalty,varargin{:});
            hhg=hh;
            H = inv(hh);
        end
        disp_verbose(['Gradient norm  ',num2str(norm(gg))],Verbose)
        ee=eig(hh);
        disp_verbose(['Minimum Hessian eigenvalue ',num2str(min(ee))],Verbose)
        disp_verbose(['Maximum Hessian eigenvalue ',num2str(max(ee))],Verbose)
        if max(eig(hh))<0
            disp_verbose('Negative definite Hessian! Local maximum!',Verbose)
            pause(1)
        end
        t=toc(tic1);
        disp_verbose(['Elapsed time for iteration ',num2str(t),' s.'],Verbose)
        g(:,icount+1)=gg;
        if Save_files
            save('m1.mat','x','hh','g','hhg','igg','fval0','nig','H')
        end
    end
end
if Save_files
    save('m1.mat','x','hh','g','hhg','igg','fval0','nig')
end
if ftol>ftol0
    skipline()
    disp_verbose('Numerical noise in the likelihood',Verbose)
    disp_verbose('Tolerance had to be relaxed',Verbose)
    skipline()
end

if jit==nit
    skipline()
    disp_verbose('Maximum number of iterations reached',Verbose)
    skipline()
end

if norm(gg)<=gtol
    disp_verbose(['Estimation ended:'],Verbose)
    disp_verbose(['Gradient norm < ', num2str(gtol)],Verbose)
end
if check==1
    disp_verbose(['Estimation successful.'],Verbose)
end

return


function x = check_bounds(x,bounds)

inx = find(x>=bounds(:,2));
if ~isempty(inx)
    x(inx) = bounds(inx,2)-eps;
end

inx = find(x<=bounds(:,1));
if ~isempty(inx)
    x(inx) = bounds(inx,1)+eps;
end