1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
|
function [x,fval,exitflag] = simplex_optimization_routine(objective_function,x,options,var_names,varargin)
% Nelder-Mead like optimization routine (see http://en.wikipedia.org/wiki/Nelder-Mead_method)
%
% By default the standard values for the reflection, the expansion, the contraction
% and the shrink coefficients are used (alpha = 1, chi = 2, psi = 1 / 2 and σ = 1 / 2).
%
% The routine automatically restarts from the current solution while amelioration is possible.
%
% INPUTS
% o objective_function [string] Name of the objective function to be minimized.
% o x [double] n*1 vector, starting guess of the optimization routine.
% o options [structure] Options of this implementation of the simplex algorithm.
% o var_names [cell] Names of parameters
% for verbose output
% o varargin [cell of structures] Structures to be passed to the objective function.
%
% varargin{1} --> DynareDataset
% varargin{2} --> DatasetInfo
% varargin{3} --> DynareOptions
% varargin{4} --> Model
% varargin{5} --> EstimatedParameters
% varargin{6} --> BayesInfo
% varargin{1} --> DynareResults
%
% OUTPUTS
% o x [double] n*1 vector, estimate of the optimal inputs.
% o fval [double] scalar, value of the objective at the optimum.
% o exitflag [integer] scalar equal to 0 or 1 (0 if the algorithm did not converge to
% a minimum).
% Copyright (C) 2010-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% Set verbose mode
verbose = options.verbosity;
% Set number of control variables.
number_of_variables = length(x);
% get options.
if isempty(options.maxfcall)
max_func_calls = options.maxfcallfactor*number_of_variables;
else
max_func_calls=options.maxfcall;
end
% Set tolerance parameter.
if isfield(options,'tolerance') && isfield(options.tolerance,'x')
x_tolerance = options.tolerance.x;
else
x_tolerance = 1e-4;
end
% Set tolerance parameter.
if isfield(options,'tolerance') && isfield(options.tolerance,'f')
f_tolerance = options.tolerance.f;
else
f_tolerance = 1e-4;
end
% Set maximum number of iterations.
if isfield(options,'maxiter')
max_iterations = options.maxiter;
else
max_iterations = 5000;
end
% Set reflection parameter.
if isfield(options,'reflection_parameter')
if isfield(options.reflection_parameter,'value')
rho = options.reflection_parameter.value;
else
rho = 1.0;
end
if isfield(options.reflection_parameter,'random')
randomize_rho = options.reflection_parameter.random;
lambda_rho = 1/rho;
else
randomize_rho = 0;
end
else
rho = 1.0;
randomize_rho = 0;
end
% Set expansion parameter.
if isfield(options,'expansion_parameter')
if isfield(options.expansion_parameter,'value')
chi = options.expansion_parameter.value;
else
chi = 2.0;
end
if isfield(options.expansion_parameter,'random')
randomize_chi = options.expansion_parameter.random;
lambda_chi = 1/chi;
else
randomize_chi = 0;
end
if isfield(options.expansion_parameter,'optim')
optimize_expansion_parameter = options.expansion_parameter.optim;
else
optimize_expansion_parameter = 0;
end
else
chi = 2.0;
randomize_chi = 0;
optimize_expansion_parameter = 1;
end
% Set contraction parameter.
if isfield(options,'contraction_parameter')
if isfield(options.contraction_parameter,'value')
psi = options.contraction_parameter.value;
else
psi = 0.5;
end
if isfield(options.contraction_parameter,'random')
randomize_psi = options.expansion_parameter.random;
else
randomize_psi = 0;
end
else
psi = 0.5;
randomize_psi = 0;
end
% Set shrink parameter.
if isfield(options,'shrink_parameter')
if isfield(options.shrink_parameter,'value')
sigma = options.shrink_parameter.value;
else
sigma = 0.5;
end
if isfield(options.shrink_parameter,'random')
randomize_sigma = options.shrink_parameter.random;
else
randomize_sigma = 0;
end
else
sigma = 0.5;
randomize_sigma = 0;
end
% Set delta parameter.
if isfield(options,'delta_factor')% Size of the simplex
delta = options.delta_factor;
else
delta = 0.05;
end
DELTA = delta;
zero_delta = delta/200;% To be used instead of delta if x(i) is zero.
% Set max_no_improvements.
if isfield(options,'max_no_improvements')
max_no_improvements = options.max_no_improvements;
else
max_no_improvements = number_of_variables*10;
end
% Set vector of indices.
unit_vector = ones(1,number_of_variables);
trend_vector_1 = 1:number_of_variables;
trend_vector_2 = 2:(number_of_variables+1);
% Set initial simplex around the initial guess (x).
if verbose
skipline(3)
disp('+----------------------+')
disp(' SIMPLEX INITIALIZATION ')
disp('+----------------------+')
skipline()
end
initial_point = x;
[initial_score,junk1,nopenalty] = feval(objective_function,x,varargin{:});
if ~nopenalty
error('simplex_optimization_routine:: Initial condition is wrong!')
else
[v,fv,delta] = simplex_initialization(objective_function,initial_point,initial_score,delta,zero_delta,1,varargin{:});
func_count = number_of_variables + 1;
iter_count = 1;
if verbose
disp(['Objective function value: ' num2str(fv(1))])
disp(['Current parameter values: '])
fprintf(1,'%s: \t\t\t %s \t\t\t %s \t\t\t %s \t\t\t %s \t\t\t %s \n','Names','Best point', 'Worst point', 'Mean values', 'Min values', 'Max values');
for i=1:number_of_variables
fprintf(1,'%s: \t\t\t %+8.6f \t\t\t %+8.6f \t\t\t %+8.6f \t\t\t %+8.6f \t\t\t %+8.6f \n',var_names{i},v(i,1), v(i,end), mean(v(i,:),2), min(v(i,:),[],2), max(v(i,:),[],2));
end
skipline()
end
end
vold = v;
no_improvements = 0;
simplex_init = 1;
simplex_iterations = 1;
max_simplex_algo_iterations = 3;
simplex_algo_iterations = 1;
best_point = v(:,1);
best_point_score = fv(1);
convergence = 0;
tooslow = 0;
iter_no_improvement_break = 0;
max_no_improvement_break = 1;
while (func_count < max_func_calls) && (iter_count < max_iterations) && (simplex_algo_iterations<=max_simplex_algo_iterations)
% Do we really need to continue?
critF = max(abs(fv(1)-fv(trend_vector_2)));
critX = max(max(abs(v(:,trend_vector_2)-v(:,unit_vector))));
if critF <= max(f_tolerance,10*eps(fv(1))) && critX <= max(x_tolerance,10*eps(max(v(:,1))))
convergence = 1;
end
if critX <= x_tolerance^2 && critF>1
tooslow = 1;
end
% Set random reflection and expansion parameters if needed.
if randomize_rho
rho = -log(rand)/lambda_rho;
end
if randomize_chi
chi = -log(rand)/lambda_chi;
end
% Set random contraction and shrink parameters if needed.
if randomize_psi
psi = rand;
end
if randomize_sigma
sigma = rand;
end
% Compute the reflection point
xbar = mean(v(:,trend_vector_1),2); % Average of the n best points.
xr = xbar + rho*(xbar-v(:,end));
x = xr;
fxr = feval(objective_function,x,varargin{:});
func_count = func_count+1;
if fxr < fv(1)% xr is better than previous best point v(:,1).
% Calculate the expansion point
xe = xbar + rho*chi*(xbar-v(:,end));
x = xe;
fxe = feval(objective_function,x,varargin{:});
func_count = func_count+1;
if fxe < fxr% xe is even better than xr.
if optimize_expansion_parameter
if verbose>1
skipline(2)
disp('Compute optimal expansion...')
end
xee = xbar + rho*chi*1.01*(xbar-v(:,end));
x = xee;
fxee = feval(objective_function,x,varargin{:});
func_count = func_count+1;
if fxee<fxe
decrease = 1;
weight = rho*chi*1.02;
fxeee_old = fxee;
xeee_old = xee;
if verbose>1
fprintf(1,'Weight = ');
end
while decrease
weight = 1.02*weight;
if verbose>1
fprintf(1,'\b\b\b\b\b\b\b %6.4f',weight);
end
xeee = xbar + weight*(xbar-v(:,end));
x = xeee;
fxeee = feval(objective_function,x,varargin{:});
func_count = func_count+1;
if (fxeee<fxeee_old) && -(fxeee-fxeee_old)>f_tolerance*10*fxeee_old
fxeee_old = fxeee;
xeee_old = xeee;
else
decrease = 0;
end
end
if verbose>1
fprintf(1,'\n');
end
xe = xeee_old;
fxe = fxeee_old;
else
decrease = 1;
weight = rho*chi;
fxeee_old = fxee;
xeee_old = xee;
if verbose>1
fprintf(1,'Weight = ');
end
while decrease
weight = weight/1.02;
if verbose>1
fprintf(1,'\b\b\b\b\b\b\b %6.4f',weight);
end
xeee = xbar + weight*(xbar-v(:,end));
x = xeee;
fxeee = feval(objective_function,x,varargin{:});
func_count = func_count+1;
if (fxeee<fxeee_old) && -(fxeee-fxeee_old)>f_tolerance*10*fxeee_old
fxeee_old = fxeee;
xeee_old = xeee;
else
decrease = 0;
end
end
if verbose>1
fprintf(1,'\n');
end
xe = xeee_old;
fxe = fxeee_old;
end
if verbose>1
disp('Done!')
skipline(2)
end
end
v(:,end) = xe;
fv(end) = fxe;
move = 'expand';
else% if xe is not better than xr.
v(:,end) = xr;
fv(end) = fxr;
move = 'reflect-1';
end
else% xr is not better than previous best point v(:,1).
if fxr < fv(number_of_variables)% xr is better than previous point v(:,n).
v(:,end) = xr;
fv(end) = fxr;
move = 'reflect-0';
else% xr is not better than previous point v(:,n).
if fxr < fv(end)% xr is better than previous worst point [=> outside contraction].
xc = (1 + psi*rho)*xbar - psi*rho*v(:,end);
x = xc;
fxc = feval(objective_function,x,varargin{:});
func_count = func_count+1;
if fxc <= fxr
v(:,end) = xc;
fv(end) = fxc;
move = 'contract outside';
else
move = 'shrink';
end
else% xr is the worst point [=> inside contraction].
xcc = (1-psi)*xbar + psi*v(:,end);
x = xcc;
fxcc = feval(objective_function,x,varargin{:});
func_count = func_count+1;
if fxcc < fv(end)
v(:,end) = xcc;
fv(end) = fxcc;
move = 'contract inside';
else
% perform a shrink
move = 'shrink';
end
end
if strcmp(move,'shrink')
for j=trend_vector_2
v(:,j)=v(:,1)+sigma*(v(:,j) - v(:,1));
x = v(:,j);
fv(j) = feval(objective_function,x,varargin{:});
end
func_count = func_count + number_of_variables;
end
end
end
% Sort n+1 points by incresing order of the objective function values.
[fv,sort_idx] = sort(fv);
v = v(:,sort_idx);
iter_count = iter_count + 1;
simplex_iterations = simplex_iterations+1;
if verbose>1
disp(['Simplex iteration number: ' int2str(simplex_iterations) '-' int2str(simplex_init) '-' int2str(simplex_algo_iterations)])
disp(['Simplex move: ' move])
disp(['Objective function value: ' num2str(fv(1))])
disp(['Mode improvement: ' num2str(best_point_score-fv(1))])
disp(['Norm of dx: ' num2str(norm(best_point-v(:,1)))])
disp(['Norm of dSimplex: ' num2str(norm(v-vold,'fro'))])
disp(['Crit. f: ' num2str(critF)])
disp(['Crit. x: ' num2str(critX)])
skipline()
end
if verbose && max(abs(best_point-v(:,1)))>x_tolerance
if verbose<2
disp(['Simplex iteration number: ' int2str(simplex_iterations) '-' int2str(simplex_init) '-' int2str(simplex_algo_iterations)])
disp(['Objective function value: ' num2str(fv(1))])
disp(['Mode improvement: ' num2str(best_point_score-fv(1))])
disp(['Norm of dx: ' num2str(norm(best_point-v(:,1)))])
disp(['Norm of dSimplex: ' num2str(norm(v-vold,'fro'))])
disp(['Crit. f: ' num2str(critF)])
disp(['Crit. x: ' num2str(critX)])
skipline()
end
disp(['Current parameter values: '])
fprintf(1,'%s: \t\t\t %s \t\t\t %s \t\t\t %s \t\t\t %s \t\t\t %s \n','Names','Best point', 'Worst point', 'Mean values', 'Min values', 'Max values');
for i=1:number_of_variables
fprintf(1,'%s: \t\t\t %+8.6f \t\t\t %+8.6f \t\t\t %+8.6f \t\t\t %+8.6f \t\t\t %+8.6f \n',var_names{i}, v(i,1), v(i,end), mean(v(i,:),2), min(v(i,:),[],2), max(v(i,:),[],2));
end
skipline()
end
if abs(best_point_score-fv(1))<f_tolerance
no_improvements = no_improvements+1;
else
no_improvements = 0;
end
best_point = v(:,1);
best_point_score = fv(1);
vold = v;
if no_improvements>max_no_improvements
if verbose
disp(['NO SIGNIFICANT IMPROVEMENT AFTER ' int2str(no_improvements) ' ITERATIONS!'])
end
if simplex_algo_iterations<=max_simplex_algo_iterations
% Compute the size of the simplex
delta = delta*1.05;
% Compute the new initial simplex.
[v,fv,delta] = simplex_initialization(objective_function,best_point,best_point_score,delta,zero_delta,1,varargin{:});
if verbose
disp(['(Re)Start with a lager simplex around the based on the best current '])
disp(['values for the control variables. '])
disp(['New value of delta (size of the new simplex) is: '])
for i=1:number_of_variables
fprintf(1,'%s: \t\t\t %+8.6f \n',var_names{i}, delta(i));
end
end
% Reset counters
no_improvements = 0;
func_count = func_count + number_of_variables;
iter_count = iter_count+1;
iter_no_improvement_break = iter_no_improvement_break + 1;
simplex_init = simplex_init+1;
simplex_iterations = simplex_iterations+1;
skipline(2)
end
end
if ((func_count==max_func_calls) || (iter_count==max_iterations) || (iter_no_improvement_break==max_no_improvement_break) || convergence || tooslow)
[v,fv,delta] = simplex_initialization(objective_function,best_point,best_point_score,DELTA,zero_delta,1,varargin{:});
if func_count==max_func_calls
if verbose
disp(['MAXIMUM NUMBER OF OBJECTIVE FUNCTION CALLS EXCEEDED (' int2str(max_func_calls) ')!'])
end
elseif iter_count== max_iterations
if verbose
disp(['MAXIMUM NUMBER OF ITERATIONS EXCEEDED (' int2str(max_iterations) ')!'])
end
elseif iter_no_improvement_break==max_no_improvement_break
if verbose
disp(['MAXIMUM NUMBER OF SIMPLEX REINITIALIZATION EXCEEDED (' int2str(max_no_improvement_break) ')!'])
end
iter_no_improvement_break = 0;
if simplex_algo_iterations==max_simplex_algo_iterations
max_no_improvements = Inf;% Do not stop until convergence is reached!
continue
end
elseif tooslow
disp(['CONVERGENCE NOT ACHIEVED AFTER ' int2str(simplex_iterations) ' ITERATIONS! IMPROVING TOO SLOWLY!'])
else
disp(['CONVERGENCE ACHIEVED AFTER ' int2str(simplex_iterations) ' ITERATIONS!'])
end
if simplex_algo_iterations<max_simplex_algo_iterations
% Compute the size of the simplex
delta = delta*1.05;
% Compute the new initial simplex.
[v,fv,delta] = simplex_initialization(objective_function,best_point,best_point_score,delta,zero_delta,1,varargin{:});
if verbose
disp(['(Re)Start with a lager simplex around the based on the best current '])
disp(['values for the control variables. '])
disp(['New value of delta (size of the new simplex) is: '])
for i=1:number_of_variables
fprintf(1,'%s: \t\t\t %+8.6f \n',var_names{i}, delta(i));
end
end
% Reset counters
func_count=0;
iter_count=0;
convergence = 0;
no_improvements = 0;
func_count = func_count + number_of_variables;
iter_count = iter_count+1;
simplex_iterations = simplex_iterations+1;
simplex_algo_iterations = simplex_algo_iterations+1;
skipline(2)
else
break
end
end
end% while loop.
x(:) = v(:,1);
fval = fv(1);
exitflag = 1;
if func_count>= max_func_calls
disp_verbose('Maximum number of objective function calls has been exceeded!',verbose)
exitflag = 0;
end
if iter_count>= max_iterations
disp_verbose('Maximum number of iterations has been exceeded!',verbose)
exitflag = 0;
end
function [v,fv,delta] = simplex_initialization(objective_function,point,point_score,delta,zero_delta,check_delta,varargin)
n = length(point);
v = zeros(n,n+1);
v(:,1) = point;
fv = zeros(n+1,1);
fv(1) = point_score;
if length(delta)==1
delta = repmat(delta,n,1);
end
for j = 1:n
y = point;
if y(j) ~= 0
y(j) = (1 + delta(j))*y(j);
else
y(j) = zero_delta;
end
v(:,j+1) = y;
x = y;
[fv(j+1),junk1,nopenalty_flag] = feval(objective_function,x,varargin{:});
if check_delta
while ~nopenalty_flag
if y(j)~=0
delta(j) = delta(j)/1.1;
else
zero_delta = zero_delta/1.1;
end
y = point;
if y(j) ~= 0
y(j) = (1 + delta(j))*y(j);
else
y(j) = zero_delta;
end
v(:,j+1) = y;
x = y;
[fv(j+1),junk1,nopenalty_flag] = feval(objective_function,x,varargin{:});
end
end
end
% Sort by increasing order of the objective function values.
[fv,sort_idx] = sort(fv);
v = v(:,sort_idx);
|