File: PCL_Part_info_irf.m

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (141 lines) | stat: -rw-r--r-- 4,193 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
function  y=PCL_Part_info_irf( H, varobs, ivar, M_, dr, irfpers,ii)
% sets up parameters and calls part-info kalman filter
% developed by G Perendia, July 2006 for implementation from notes by Prof. Joe Pearlman to
% suit partial information RE solution in accordance with, and based on, the
% Pearlman, Currie and Levine 1986 solution.
% 22/10/06 - Version 2 for new Riccati with 4 params instead 5

% Copyright (C) 2006-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.


% Recall that the state space is given by the
% predetermined variables s(t-1), x(t-1)
% and the jump variables x(t).
% The jump variables have dimension NETA


OBS = [];
for i=1:rows(varobs)
    OBS = [OBS find(strcmp(deblank(varobs(i,:)), cellstr(M_.endo_names))) ];
end
NOBS = length(OBS);

G1=dr.PI_ghx;
impact=dr.PI_ghu;
nmat=dr.PI_nmat;
CC=dr.PI_CC;
NX=M_.exo_nbr; % no of exogenous varexo shock variables.
FL_RANK=dr.PI_FL_RANK;
NY=M_.endo_nbr;
LL = sparse(1:NOBS,OBS,ones(NOBS,1),NY,NY);

ss=size(G1,1);
pd=ss-size(nmat,1);
SDX=M_.Sigma_e^0.5; % =SD,not V-COV, of Exog shocks or M_.Sigma_e^0.5 num_exog x num_exog matrix
if isempty(H)
    H=M_.H;
end
VV=H; % V-COV of observation errors.
MM=impact*SDX; % R*(Q^0.5) in standard KF notation
               % observation vector indices
               % mapping to endogenous variables.

L1=LL*dr.PI_TT1;
L2=LL*dr.PI_TT2;

MM1=MM(1:ss-FL_RANK,:);
U11=MM1*MM1';
% SDX

U22=0;
% determine K1 and K2 observation mapping matrices
% This uses the fact that measurements are given by L1*s(t)+L2*x(t)
% and s(t) is expressed in the dynamics as
% H1*eps(t)+G11*s(t-1)+G12*x(t-1)+G13*x(t).
% Thus the observations o(t) can be written in the form
% o(t)=K1*[eps(t)' s(t-1)' x(t-1)']' + K2*x(t) where
% K1=[L1*H1 L1*G11 L1*G12] K2=L1*G13+L2

G12=G1(NX+1:ss-2*FL_RANK,:);
KK1=L1*G12;
K1=KK1(:,1:ss-FL_RANK);
K2=KK1(:,ss-FL_RANK+1:ss)+L2;

%pre calculate time-invariant factors
A11=G1(1:pd,1:pd);
A22=G1(pd+1:end, pd+1:end);
A12=G1(1:pd, pd+1:end);
A21=G1(pd+1:end,1:pd);
Lambda= nmat*A12+A22;
I_L=inv(Lambda);
BB=A12*inv(A22);
FF=K2*inv(A22);
QQ=BB*U22*BB' + U11;
UFT=U22*FF';
AA=A11-BB*A21;
CCCC=A11-A12*nmat; % F in new notation
DD=K1-FF*A21; % H in new notation
EE=K1-K2*nmat;
RR=FF*UFT+VV;
if ~any(RR)
    % if zero add some dummy measurement err. variance-covariances
    % with diagonals 0.000001. This would not be needed if we used
    % the slow solver, or the generalised eigenvalue approach,
    % but these are both slower.
    RR=eye(size(RR,1))*1.0e-6;
end
SS=BB*UFT;
VKLUFT=VV+K2*I_L*UFT;
ALUFT=A12*I_L*UFT;
FULKV=FF*U22*I_L'*K2'+VV;
FUBT=FF*U22*BB';
nmat=nmat;
% initialise pshat
AQDS=AA*QQ*DD'+SS;
DQDR=DD*QQ*DD'+RR;
I_DQDR=inv(DQDR);
AQDQ=AQDS*I_DQDR;
ff=AA-AQDQ*DD;
hh=AA*QQ*AA'-AQDQ*AQDS';%*(DD*QQ*AA'+SS');
rr=DD*QQ*DD'+RR;
ZSIG0=disc_riccati_fast(ff,DD,rr,hh);
PP=ZSIG0 +QQ;

exo_names=M_.exo_names(M_.exo_names_orig_ord,:);

DPDR=DD*PP*DD'+RR;
I_DPDR=inv(DPDR);
PDIDPDRD=PP*DD'*I_DPDR*DD;
GG=[CCCC (AA-CCCC)*(eye(ss-FL_RANK)-PDIDPDRD); zeros(ss-FL_RANK) AA*(eye(ss-FL_RANK)-PDIDPDRD)];
imp=[impact(1:ss-FL_RANK,:); impact(1:ss-FL_RANK,:)];

% Calculate IRFs of observable series
I_PD=(eye(ss-FL_RANK)-PDIDPDRD);
LL0=[ EE (DD-EE)*I_PD];
VV = [  dr.PI_TT1 dr.PI_TT2];
stderr=diag(M_.Sigma_e^0.5);
irfmat=zeros(size(dr.PI_TT1 ,1),irfpers+1);
irfst=zeros(size(GG,1),irfpers+1);
irfst(:,1)=stderr(ii)*imp(:,ii);
for jj=2:irfpers+1
    irfst(:,jj)=GG*irfst(:,jj-1);
    irfmat(:,jj-1)=VV*irfst(NX+1:ss-FL_RANK,jj);
end
y = irfmat(:,1:irfpers);

save ([M_.fname '_PCL_PtInfoIRFs_' num2str(ii) '_' deblank(exo_names(ii,:))], 'irfmat','irfst');