File: disclyap_fast.m

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (75 lines) | stat: -rw-r--r-- 1,972 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
function [X,exitflag]=disclyap_fast(G,V,tol,check_flag)
% function X=disclyap_fast(G,V,ch)
% Inputs:
%   - G             [double]    first input matrix
%   - V             [double]    second input matrix
%   - tol           [scalar]    tolerance criterion
%   - check_flag    empty of non-empty             if non-empty: check positive-definiteness
% Outputs:
%   - X             [double]    solution matrix
%   - exitflag      [scalar]    0 if solution is found, 1 otherwise
%
% Solve the discrete Lyapunov Equation
% X=G*X*G'+V
% Using the Doubling Algorithm
%
% If check_flag is defined then the code will check if the resulting X
% is positive definite and generate an error message if it is not
%
% Joe Pearlman and Alejandro Justiniano
% 3/5/2005

% Copyright (C) 2010-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

if nargin <= 3 || isempty( check_flag ) == 1
    flag_ch = 0;
else
    flag_ch = 1;
end
exitflag=0;

P0=V;
A0=G;

matd=1;
iter=1;
while matd > tol && iter< 2000
    P1=P0+A0*P0*A0';
    A1=A0*A0;
    matd=max( max( abs( P1 - P0 ) ) );
    P0=P1;
    A0=A1;
    iter=iter+1;
end
if iter==5000
    X=NaN(P0);
    exitflag=1;
    return
end
clear A0 A1 P1;

X=(P0+P0')/2;

% Check that X is positive definite
if flag_ch==1
    [C,p]=chol(X);
    if p ~= 0
        exitflag=1;
        error('X is not positive definite')
    end
end