| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 
 | function [oo_, maxerror] = perfect_foresight_solver_core(M_, options_, oo_)
%function [oo_, maxerror] = perfect_foresight_solver_core(M_, options_, oo_)
% Core function calling solvers for perfect foresight model
%
% INPUTS
% - M_                  [struct] contains a description of the model.
% - options_            [struct] contains various options.
% - oo_                 [struct] contains results
%
% OUTPUTS
% - oo_                 [struct] contains results
% - maxerror            [double] contains the maximum absolute error
% Copyright (C) 2015-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
if options_.lmmcp.status
    options_.stack_solve_algo=7;
    options_.solve_algo = 10;
end
if options_.linear_approximation && ~(isequal(options_.stack_solve_algo,0) || isequal(options_.stack_solve_algo,7))
    error('perfect_foresight_solver: Option linear_approximation is only available with option stack_solve_algo equal to 0.')
end
if options_.linear && isequal(options_.stack_solve_algo,0)
    options_.linear_approximation = 1;
end
if options_.block
    if options_.bytecode
        try
            [info, tmp] = bytecode('dynamic', oo_.endo_simul, oo_.exo_simul, M_.params, repmat(oo_.steady_state,1,options_.periods+2), options_.periods);
        catch
            info = 1;
        end
        if info
            oo_.deterministic_simulation.status = false;
        else
            oo_.endo_simul = tmp;
            oo_.deterministic_simulation.status = true;
        end
        if options_.no_homotopy
            mexErrCheck('bytecode', info);
        end
    else
        oo_ = feval([M_.fname '_dynamic'], options_, M_, oo_);
    end
else
    if options_.bytecode
        try
            [info, tmp] = bytecode('dynamic', oo_.endo_simul, oo_.exo_simul, M_.params, repmat(oo_.steady_state,1,options_.periods+2), options_.periods);
        catch
            info = 1;
        end
        if info
            oo_.deterministic_simulation.status = false;
        else
            oo_.endo_simul = tmp;
            oo_.deterministic_simulation.status = true;
        end
        if options_.no_homotopy
            mexErrCheck('bytecode', info);
        end
    else
        if M_.maximum_endo_lead == 0 % Purely backward model
            [oo_.endo_simul, oo_.deterministic_simulation] = ...
                sim1_purely_backward(oo_.endo_simul, oo_.exo_simul, oo_.steady_state, M_, options_);
        elseif M_.maximum_endo_lag == 0 % Purely forward model
        [oo_.endo_simul, oo_.deterministic_simulation] = ...
            sim1_purely_forward(oo_.endo_simul, oo_.exo_simul, oo_.steady_state, M_, options_);
        else % General case
            switch options_.stack_solve_algo
              case 0
                if options_.linear_approximation
                    [oo_.endo_simul, oo_.deterministic_simulation] = ...
                        sim1_linear(oo_.endo_simul, oo_.exo_simul, oo_.steady_state, oo_.exo_steady_state, M_, options_);
                else
                    [oo_.endo_simul, oo_.deterministic_simulation] = ...
                        sim1(oo_.endo_simul, oo_.exo_simul, oo_.steady_state, M_, options_);
                end
              case 6
                if options_.linear_approximation
                    error('Invalid value of stack_solve_algo option!')
                end
                [oo_.endo_simul, oo_.deterministic_simulation] = ...
                    sim1_lbj(oo_.endo_simul, oo_.exo_simul, oo_.steady_state, M_, options_);
              case 7
                if options_.linear_approximation
                    if isequal(options_.solve_algo, 10)
                        warning('It would be more efficient to set option solve_algo equal to 0!')
                    end
                    [oo_.endo_simul, oo_.deterministic_simulation] = ...
                        solve_stacked_linear_problem(oo_.endo_simul, oo_.exo_simul, oo_.steady_state, oo_.exo_steady_state, M_, options_);
                else
                    [oo_.endo_simul, oo_.deterministic_simulation] = ...
                        solve_stacked_problem(oo_.endo_simul, oo_.exo_simul, oo_.steady_state, M_, options_);
                end
              otherwise
                error('Invalid value of stack_solve_algo option!')
            end
        end
    end
end
if nargout>1
    y0 = oo_.endo_simul(:,1);
    yT = oo_.endo_simul(:,options_.periods+2);
    yy  = oo_.endo_simul(:,2:options_.periods+1);
    if ~exist('illi')
        illi = M_.lead_lag_incidence';
        [i_cols,junk,i_cols_j] = find(illi(:));
        illi = illi(:,2:3);
        [i_cols_J1,junk,i_cols_1] = find(illi(:));
        i_cols_T = nonzeros(M_.lead_lag_incidence(1:2,:)');
    end
    if options_.block && ~options_.bytecode
        maxerror = oo_.deterministic_simulation.error;
    else
        if options_.bytecode
            [chck, residuals, junk]= bytecode('dynamic','evaluate', oo_.endo_simul, oo_.exo_simul, M_.params, oo_.steady_state, 1);
        else
            residuals = perfect_foresight_problem(yy(:),str2func([M_.fname '_dynamic']), y0, yT, ...
                                                  oo_.exo_simul,M_.params,oo_.steady_state, ...
                                                  M_.maximum_lag,options_.periods,M_.endo_nbr,i_cols, ...
                                                  i_cols_J1, i_cols_1, i_cols_T, i_cols_j, ...
                                                  M_.NNZDerivatives(1));
        end
        maxerror = max(max(abs(residuals)));
    end
end
 |