File: plot_identification.m

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (503 lines) | stat: -rw-r--r-- 25,525 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
function plot_identification(params,idemoments,idehess,idemodel, idelre, advanced, tittxt, name, IdentifDirectoryName,tit_TeX,name_tex)
% function plot_identification(params,idemoments,idehess,idemodel, idelre, advanced, tittxt, name, IdentifDirectoryName)
%
% INPUTS
%    o params             [array] parameter values for identification checks
%    o idemoments         [structure] identification results for the moments
%    o idehess            [structure] identification results for the Hessian
%    o idemodel           [structure] identification results for the reduced form solution
%    o idelre             [structure] identification results for the LRE model
%    o advanced           [integer] flag for advanced identification checks
%    o tittxt             [char] name of the results to plot
%    o name               [char] list of names
%    o IdentifDirectoryName   [char] directory name
%    o tittxt             [char] TeX-name of the results to plot
%    o name_tex           [char] TeX-names of the parameters
% OUTPUTS
%    None
%
% SPECIAL REQUIREMENTS
%    None

% Copyright (C) 2008-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global M_ options_

if nargin <10 || isempty(tit_TeX)
    tit_TeX=tittxt;
end

if nargin <11
    name_TeX=name;
end

[SampleSize, nparam]=size(params);
siJnorm = idemoments.siJnorm;
siHnorm = idemodel.siHnorm;
siLREnorm = idelre.siLREnorm;

% if prior_exist,
%     tittxt = 'Prior mean - ';
% else
%     tittxt = '';
% end
tittxt1=regexprep(tittxt, ' ', '_');
tittxt1=strrep(tittxt1, '.', '');
if SampleSize == 1
    siJ = idemoments.siJ;
    hh = dyn_figure(options_.nodisplay,'Name',[tittxt, ' - Identification using info from observables']);
    subplot(211)
    mmm = (idehess.ide_strength_J);
    [ss, is] = sort(mmm);
    if ~all(isnan(idehess.ide_strength_J_prior))
        bar(log([idehess.ide_strength_J(:,is)' idehess.ide_strength_J_prior(:,is)']))
    else
        bar(log([idehess.ide_strength_J(:,is)' ]))
    end
    hold on
    plot((1:length(idehess.ide_strength_J(:,is)))-0.15,log([idehess.ide_strength_J(:,is)']),'o','MarkerSize',7,'MarkerFaceColor',[0 0 0],'MarkerEdgeColor','none')
    plot((1:length(idehess.ide_strength_J_prior(:,is)))+0.15,log([idehess.ide_strength_J_prior(:,is)']),'o','MarkerSize',7,'MarkerFaceColor',[0 0 0],'MarkerEdgeColor','none')
    if any(isinf(log(idehess.ide_strength_J(idehess.identified_parameter_indices))))
        inf_indices=find(isinf(log(idehess.ide_strength_J(idehess.identified_parameter_indices))));
        inf_pos=ismember(is,inf_indices);
        plot(find(inf_pos)-0.15,zeros(sum(inf_pos),1),'o','MarkerSize',7,'MarkerFaceColor',[1 1 1],'MarkerEdgeColor',[0 0 0])
    end
    if any(isinf(log(idehess.ide_strength_J_prior(idehess.identified_parameter_indices))))
        inf_indices=find(isinf(log(idehess.ide_strength_J_prior(idehess.identified_parameter_indices))));
        inf_pos=ismember(is,inf_indices);
        plot(find(inf_pos)+0.15,zeros(sum(inf_pos),1),'o','MarkerSize',7,'MarkerFaceColor',[1 1 1],'MarkerEdgeColor',[0 0 0])
    end
    set(gca,'xlim',[0 nparam+1])
    set(gca,'xticklabel','')
    dy = get(gca,'ylim');
    for ip=1:nparam
        text(ip,dy(1),name{is(ip)},'rotation',90,'HorizontalAlignment','right','interpreter','none')
    end
    if ~all(isnan(idehess.ide_strength_J_prior))
        legend('relative to param value','relative to prior std','Location','Best')
    else
        legend('relative to param value','Location','Best')
    end
    if  idehess.flag_score
        title('Identification strength with asymptotic Information matrix (log-scale)')
    else
        title('Identification strength with moments Information matrix (log-scale)')
    end

    subplot(212)
    if ~all(isnan(idehess.deltaM_prior))
        bar(log([idehess.deltaM(is) idehess.deltaM_prior(is)]))
    else
        bar(log([idehess.deltaM(is)]))
    end
    hold on
    plot((1:length(idehess.deltaM(is)))-0.15,log([idehess.deltaM(is)']),'o','MarkerSize',7,'MarkerFaceColor',[0 0 0],'MarkerEdgeColor','none')
    plot((1:length(idehess.deltaM_prior(is)))+0.15,log([idehess.deltaM_prior(is)']),'o','MarkerSize',7,'MarkerFaceColor',[0 0 0],'MarkerEdgeColor','none')
    inf_pos=find(isinf(log(idehess.deltaM)));
    if ~isempty(inf_pos)
        inf_indices=~ismember(inf_pos,idehess.sensitivity_zero_pos);
        inf_pos=ismember(is,inf_pos(inf_indices));
        plot(find(inf_pos)-0.15,zeros(sum(inf_pos),1),'o','MarkerSize',7,'MarkerFaceColor',[1 1 1],'MarkerEdgeColor',[0 0 0])
    end
    inf_pos=find(isinf(log(idehess.deltaM_prior)));
    if ~isempty(inf_pos)
        inf_indices=~ismember(inf_pos,idehess.sensitivity_zero_pos);
        inf_pos=ismember(is,inf_pos(inf_indices));
        plot(find(inf_pos)+0.15,zeros(sum(inf_pos),1),'o','MarkerSize',7,'MarkerFaceColor',[1 1 1],'MarkerEdgeColor',[0 0 0])
    end
    set(gca,'xlim',[0 nparam+1])
    set(gca,'xticklabel','')
    dy = get(gca,'ylim');
    for ip=1:nparam
        text(ip,dy(1),name{is(ip)},'rotation',90,'HorizontalAlignment','right','interpreter','none')
    end
    if ~all(isnan(idehess.deltaM_prior))
        legend('relative to param value','relative to prior std','Location','Best')
    else
        legend('relative to param value','Location','Best')
    end
    if  idehess.flag_score
        title('Sensitivity component with asymptotic Information matrix (log-scale)')
    else
        title('Sensitivity component with moments Information matrix (log-scale)')
    end
    if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
        fidTeX = fopen([IdentifDirectoryName '/' M_.fname '_ident_strength_' tittxt1,'.tex'],'w');
        fprintf(fidTeX,'%% TeX eps-loader file generated by plot_identification.m (Dynare).\n');
        fprintf(fidTeX,['%% ' datestr(now,0) '\n\n']);
        fprintf(fidTeX,'\\begin{figure}[H]\n');
        fprintf(fidTeX,'\\centering \n');
        fprintf(fidTeX,'\\includegraphics[width=0.8\\textwidth]{%s_ident_strength_%s}\n',[IdentifDirectoryName '/' M_.fname],tittxt1);
        fprintf(fidTeX,'\\caption{%s  - Identification using info from observables.}',tit_TeX);
        fprintf(fidTeX,'\\label{Fig:ident:%s}\n',deblank(tittxt));
        fprintf(fidTeX,'\\end{figure}\n\n');
        fprintf(fidTeX,'%% End Of TeX file. \n');
        fclose(fidTeX);
    end
    dyn_saveas(hh,[IdentifDirectoryName '/' M_.fname '_ident_strength_' tittxt1],options_.nodisplay,options_.graph_format);

    if advanced
        if ~options_.nodisplay
            skipline()
            disp('Press ENTER to plot advanced diagnostics'), pause(5),
        end
        if all(isnan([siJnorm';siHnorm';siLREnorm']))
            fprintf('\nIDENTIFICATION: Skipping sensitivity plot, because standard deviation of parameters is NaN, possibly due to the use of ML.\n')
        else
            hh = dyn_figure(options_.nodisplay,'Name',[tittxt, ' - Sensitivity plot']);
            subplot(211)
            mmm = (siJnorm)'./max(siJnorm);
            mmm1 = (siHnorm)'./max(siHnorm);
            mmm=[mmm mmm1];
            mmm1 = (siLREnorm)'./max(siLREnorm);
            offset=length(siHnorm)-length(siLREnorm);
            mmm1 = [NaN(offset,1); mmm1];
            mmm=[mmm mmm1];

            bar(log(mmm(is,:).*100))
            set(gca,'xlim',[0 nparam+1])
            set(gca,'xticklabel','')
            dy = get(gca,'ylim');
            for ip=1:nparam
                text(ip,dy(1),name{is(ip)},'rotation',90,'HorizontalAlignment','right','interpreter','none')
            end
            legend('Moments','Model','LRE model','Location','Best')
            title('Sensitivity bars using derivatives (log-scale)')
            dyn_saveas(hh,[IdentifDirectoryName '/' M_.fname '_sensitivity_' tittxt1 ],options_.nodisplay,options_.graph_format);
            if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
                fidTeX = fopen([IdentifDirectoryName '/' M_.fname '_sensitivity_' tittxt1,'.tex'],'w');
                fprintf(fidTeX,'%% TeX eps-loader file generated by plot_identification.m (Dynare).\n');
                fprintf(fidTeX,['%% ' datestr(now,0) '\n\n']);
                fprintf(fidTeX,'\\begin{figure}[H]\n');
                fprintf(fidTeX,'\\centering \n');
                fprintf(fidTeX,'\\includegraphics[width=0.8\\textwidth]{%s_sensitivity_%s}\n',[IdentifDirectoryName '/' M_.fname],tittxt1);
                fprintf(fidTeX,'\\caption{%s  - Sensitivity plot.}',tit_TeX);
                fprintf(fidTeX,'\\label{Fig:sensitivity:%s}\n',deblank(tittxt));
                fprintf(fidTeX,'\\end{figure}\n\n');
                fprintf(fidTeX,'%% End Of TeX file. \n');
                fclose(fidTeX);
            end
        end
        % identificaton patterns
        for  j=1:size(idemoments.cosnJ,2)
            pax=NaN(nparam,nparam);
            %             fprintf('\n')
            %             disp(['Collinearity patterns with ', int2str(j) ,' parameter(s)'])
            %             fprintf('%-15s [%-*s] %10s\n','Parameter',(15+1)*j,' Expl. params ','cosn')
            for i=1:nparam
                namx='';
                for in=1:j
                    dumpindx = idemoments.pars{i,j}(in);
                    if isnan(dumpindx)
                        namx=[namx ' ' sprintf('%-15s','--')];
                    else
                        namx=[namx ' ' sprintf('%-15s',name{dumpindx})];
                        pax(i,dumpindx)=idemoments.cosnJ(i,j);
                    end
                end
                %                 fprintf('%-15s [%s] %10.3f\n',name{i},namx,idemoments.cosnJ(i,j))
            end
            hh = dyn_figure(options_.nodisplay,'Name',[tittxt,' - Collinearity patterns with ', int2str(j) ,' parameter(s)']);
            imagesc(pax,[0 1]);
            set(gca,'xticklabel','')
            set(gca,'yticklabel','')
            for ip=1:nparam
                text(ip,(0.5),name{ip},'rotation',90,'HorizontalAlignment','left','interpreter','none')
                text(0.5,ip,name{ip},'rotation',0,'HorizontalAlignment','right','interpreter','none')
            end
            colorbar;
            colormap('jet');
            ax=colormap;
            ax(1,:)=[0.9 0.9 0.9];
            colormap(ax);
            if nparam>10
                set(gca,'xtick',(5:5:nparam))
                set(gca,'ytick',(5:5:nparam))
            end
            set(gca,'xgrid','on')
            set(gca,'ygrid','on')
            xlabel([tittxt,' - Collinearity patterns with ', int2str(j) ,' parameter(s)'],'interpreter','none')
            dyn_saveas(hh,[ IdentifDirectoryName '/' M_.fname '_ident_collinearity_' tittxt1 '_' int2str(j) ],options_.nodisplay,options_.graph_format);
            if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
                fidTeX = fopen([ IdentifDirectoryName '/' M_.fname '_ident_collinearity_' tittxt1 '_' int2str(j),'.tex'],'w');
                fprintf(fidTeX,'%% TeX eps-loader file generated by plot_identification.m (Dynare).\n');
                fprintf(fidTeX,['%% ' datestr(now,0) '\n\n']);
                fprintf(fidTeX,'\\begin{figure}[H]\n');
                fprintf(fidTeX,'\\centering \n');
                fprintf(fidTeX,'\\includegraphics[width=0.8\\textwidth]{%s_ident_collinearity_%s_%u}\n',[IdentifDirectoryName '/' M_.fname],tittxt1,j);
                fprintf(fidTeX,'\\caption{%s  - Collinearity patterns with %u parameter(s).}',tit_TeX,j);
                fprintf(fidTeX,'\\label{Fig:collinearity:%s:%u_pars}\n',deblank(tittxt),j);
                fprintf(fidTeX,'\\end{figure}\n\n');
                fprintf(fidTeX,'%% End Of TeX file. \n');
                fclose(fidTeX);
            end
        end
        skipline()
        [U,S,V]=svd(idehess.AHess,0);
        S=diag(S);
        if idehess.flag_score
            if nparam<5
                f1 = dyn_figure(options_.nodisplay,'Name',[tittxt,' - Identification patterns (Information matrix)']);
                tex_tit_1=[tittxt,' - Identification patterns (Information matrix)'];
            else
                f1 = dyn_figure(options_.nodisplay,'Name',[tittxt,' - Identification patterns (Information matrix): SMALLEST SV']);
                tex_tit_1=[tittxt,' - Identification patterns (Information matrix): SMALLEST SV'];
                f2 = dyn_figure(options_.nodisplay,'Name',[tittxt,' - Identification patterns (Information matrix): HIGHEST SV']);
                tex_tit_2=[tittxt,' - Identification patterns (Information matrix): HIGHEST SV'];
            end
        else
            %             S = idemoments.S;
            %             V = idemoments.V;
            if nparam<5
                f1 = dyn_figure(options_.nodisplay,'Name',[tittxt,' - Identification patterns (moments Information matrix)']);
                tex_tit_1=[tittxt,' - Identification patterns (moments Information matrix)'];
            else
                f1 = dyn_figure(options_.nodisplay,'Name',[tittxt,' - Identification patterns (moments Information matrix): SMALLEST SV']);
                tex_tit_1=[tittxt,' - Identification patterns (moments Information matrix): SMALLEST SV'];
                f2 = dyn_figure(options_.nodisplay,'Name',[tittxt,' - Identification patterns (moments Information matrix): HIGHEST SV']);
                tex_tit_2=[tittxt,' - Identification patterns (moments Information matrix): HIGHEST SV'];
            end
        end
        for j=1:min(nparam,8)
            if j<5
                set(0,'CurrentFigure',f1),
                jj=j;
            else
                set(0,'CurrentFigure',f2),
                jj=j-4;
            end
            subplot(4,1,jj)
            if j<5
                bar(abs(V(:,end-j+1)))
                Stit = S(end-j+1);
            else
                bar(abs(V(:,jj))),
                Stit = S(jj);
            end
            set(gca,'xticklabel','')
            if j==4 || j==nparam || j==8
                for ip=1:nparam
                    text(ip,-0.02,name{ip},'rotation',90,'HorizontalAlignment','right','interpreter','none')
                end
            end
            title(['Singular value ',num2str(Stit)])
        end
        dyn_saveas(f1,[  IdentifDirectoryName '/' M_.fname '_ident_pattern_' tittxt1 '_1' ],options_.nodisplay,options_.graph_format);
        if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
            fidTeX = fopen([  IdentifDirectoryName '/' M_.fname '_ident_pattern_' tittxt1 '_1','.tex'],'w');
            fprintf(fidTeX,'%% TeX eps-loader file generated by plot_identification.m (Dynare).\n');
            fprintf(fidTeX,['%% ' datestr(now,0) '\n\n']);
            fprintf(fidTeX,'\\begin{figure}[H]\n');
            fprintf(fidTeX,'\\centering \n');
            fprintf(fidTeX,'\\includegraphics[width=0.8\\textwidth]{%s_ident_pattern_%s_1}\n',[IdentifDirectoryName '/' M_.fname],tittxt1);
            fprintf(fidTeX,'\\caption{%s.}',tex_tit_1);
            fprintf(fidTeX,'\\label{Fig:ident_pattern:%s:1}\n',tittxt1);
            fprintf(fidTeX,'\\end{figure}\n\n');
            fprintf(fidTeX,'%% End Of TeX file. \n');
            fclose(fidTeX);
        end
        if nparam>4
            dyn_saveas(f2,[  IdentifDirectoryName '/' M_.fname '_ident_pattern_' tittxt1 '_2' ],options_.nodisplay,options_.graph_format);
            if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
                fidTeX = fopen([  IdentifDirectoryName '/' M_.fname '_ident_pattern_' tittxt1 '_2.tex'],'w');
                fprintf(fidTeX,'%% TeX eps-loader file generated by plot_identification.m (Dynare).\n');
                fprintf(fidTeX,['%% ' datestr(now,0) '\n\n']);
                fprintf(fidTeX,'\\begin{figure}[H]\n');
                fprintf(fidTeX,'\\centering \n');
                fprintf(fidTeX,'\\includegraphics[width=0.8\\textwidth]{%s_ident_pattern_%s_2}\n',[IdentifDirectoryName '/' M_.fname],tittxt1);
                fprintf(fidTeX,'\\caption{%s.}',tex_tit_2);
                fprintf(fidTeX,'\\label{Fig:ident_pattern:%s:2}\n',tittxt1);
                fprintf(fidTeX,'\\end{figure}\n\n');
                fprintf(fidTeX,'%% End Of TeX file. \n');
                fclose(fidTeX);
            end
        end
    end

else
    hh = dyn_figure(options_.nodisplay,'Name',['MC sensitivities']);
    subplot(211)
    mmm = (idehess.ide_strength_J);
    [ss, is] = sort(mmm);
    mmm = mean(siJnorm)';
    mmm = mmm./max(mmm);
    if advanced
        mmm1 = mean(siHnorm)';
        mmm=[mmm mmm1./max(mmm1)];
        mmm1 = mean(siLREnorm)';
        offset=size(siHnorm,2)-size(siLREnorm,2);
        mmm1 = [NaN(offset,1); mmm1./max(mmm1)];
        mmm=[mmm mmm1];
    end

    bar(mmm(is,:))
    set(gca,'xlim',[0 nparam+1])
    set(gca,'xticklabel','')
    dy = get(gca,'ylim');
    for ip=1:nparam
        text(ip,dy(1),name{is(ip)},'rotation',90,'HorizontalAlignment','right','interpreter','none')
    end
    if advanced
        legend('Moments','Model','LRE model','Location','Best')
    end
    title('MC mean of sensitivity measures')
    dyn_saveas(hh,[ IdentifDirectoryName '/' M_.fname '_MC_sensitivity' ],options_.nodisplay,options_.graph_format);
    if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
        fidTeX = fopen([ IdentifDirectoryName '/' M_.fname '_MC_sensitivity.tex'],'w');
        fprintf(fidTeX,'%% TeX eps-loader file generated by plot_identification.m (Dynare).\n');
        fprintf(fidTeX,['%% ' datestr(now,0) '\n\n']);
        fprintf(fidTeX,'\\begin{figure}[H]\n');
        fprintf(fidTeX,'\\centering \n');
        fprintf(fidTeX,'\\includegraphics[width=0.8\\textwidth]{%s_MC_sensitivity}\n',[IdentifDirectoryName '/' M_.fname]);
        fprintf(fidTeX,'\\caption{MC mean of sensitivity measures}');
        fprintf(fidTeX,'\\label{Fig:_MC_sensitivity}\n');
        fprintf(fidTeX,'\\end{figure}\n\n');
        fprintf(fidTeX,'%% End Of TeX file. \n');
        fclose(fidTeX);
    end

    if advanced
        if ~options_.nodisplay,
            skipline()
            disp('Press ENTER to display advanced diagnostics'), pause(5),
        end
        %         options_.nograph=1;
        hh = dyn_figure(options_.nodisplay,'Name','MC Condition Number');
        subplot(221)
        hist(log10(idemodel.cond))
        title('log10 of Condition number in the model')
        subplot(222)
        hist(log10(idemoments.cond))
        title('log10 of Condition number in the moments')
        subplot(223)
        hist(log10(idelre.cond))
        title('log10 of Condition number in the LRE model')
        dyn_saveas(hh,[IdentifDirectoryName '/' M_.fname '_ident_COND' ],options_.nodisplay,options_.graph_format);
        options_mcf.pvalue_ks = 0.1;
        options_mcf.pvalue_corr = 0.001;
        options_mcf.alpha2 = 0;
        options_mcf.param_names = name;
        options_mcf.param_names_tex = name_tex;
        options_mcf.fname_ = M_.fname;
        options_mcf.OutputDirectoryName = IdentifDirectoryName;
        options_mcf.beha_title = 'LOW condition nbr';
        options_mcf.nobeha_title = 'HIGH condition nbr';
        options_mcf.amcf_name = 'MC_HighestCondNumberLRE';
        options_mcf.amcf_title = 'MC Highest Condition Number LRE Model';
        options_mcf.title = 'MC Highest Condition Number LRE Model';
        ncut=floor(SampleSize/10*9);
        [dum,is]=sort(idelre.cond);
        mcf_analysis(params, is(1:ncut), is(ncut+1:end), options_mcf, options_);
        options_mcf.amcf_name = 'MC_HighestCondNumberModel';
        options_mcf.amcf_title = 'MC Highest Condition Number Model Solution';
        options_mcf.title = 'MC Highest Condition Number Model Solution';
        [dum,is]=sort(idemodel.cond);
        mcf_analysis(params, is(1:ncut), is(ncut+1:end), options_mcf, options_);
        options_mcf.amcf_name = 'MC_HighestCondNumberMoments';
        options_mcf.amcf_title = 'MC Highest Condition Number Model Moments';
        options_mcf.title = 'MC Highest Condition Number Model Moments';
        [dum,is]=sort(idemoments.cond);
        mcf_analysis(params, is(1:ncut), is(ncut+1:end), options_mcf, options_);
        %         [proba, dproba] = stab_map_1(idemoments.Mco', is(1:ncut), is(ncut+1:end), 'HighestCondNumberMoments_vs_Mco', 1, [], IdentifDirectoryName);
        %         for j=1:nparam,
        % %             ibeh=find(idemoments.Mco(j,:)<0.9);
        % %             inonbeh=find(idemoments.Mco(j,:)>=0.9);
        % %             if ~isempty(ibeh) && ~isempty(inonbeh)
        % %                 [proba, dproba] = stab_map_1(params, ibeh, inonbeh, ['HighestMultiCollinearity_',name{j}], 1, [], IdentifDirectoryName);
        % %             end
        %             [~,is]=sort(idemoments.Mco(:,j));
        %             [proba, dproba] = stab_map_1(params, is(1:ncut), is(ncut+1:end), ['MC_HighestMultiCollinearity_',name{j}], 1, [], IdentifDirectoryName, 0.15);
        %         end

        if nparam<5
            f1 = dyn_figure(options_.nodisplay,'Name',[tittxt,' - MC Identification patterns (moments): HIGHEST SV']);
            tex_tit_1=[tittxt,' - MC Identification patterns (moments): HIGHEST SV'];
        else
            f1 = dyn_figure(options_.nodisplay,'Name',[tittxt,' - MC Identification patterns (moments): SMALLEST SV']);
            tex_tit_1=[tittxt,' - MC Identification patterns (moments): SMALLEST SV'];
            f2 = dyn_figure(options_.nodisplay,'Name',[tittxt,' - MC Identification patterns (moments): HIGHEST SV']);
            tex_tit_2=[tittxt,' - MC Identification patterns (moments): HIGHEST SV'];
        end
        nplots=min(nparam,8);
        if nplots>4
            nsubplo=ceil(nplots/2);
        else
            nsubplo=nplots;
        end
        for j=1:nplots
            if (nparam>4 && j<=ceil(nplots/2)) || nparam<5
                set(0,'CurrentFigure',f1),
                jj=j;
                VVV=squeeze(abs(idemoments.V(:,:,end-j+1)));
                SSS = idemoments.S(:,end-j+1);
            else
                set(0,'CurrentFigure',f2),
                jj=j-ceil(nplots/2);
                VVV=squeeze(abs(idemoments.V(:,:,jj)));
                SSS = idemoments.S(:,jj);
            end
            subplot(nsubplo,1,jj)
            for i=1:nparam
                [post_mean, post_median(:,i), post_var, hpd_interval(i,:), post_deciles] = posterior_moments(VVV(:,i),0,0.9);
            end
            bar(post_median)
            hold on, plot(hpd_interval,'--*r'),
            Stit=mean(SSS);

            set(gca,'xticklabel','')
            if j==4 || j==nparam || j==8
                for ip=1:nparam
                    text(ip,-0.02,name{ip},'rotation',90,'HorizontalAlignment','right','interpreter','none')
                end
            end
            title(['MEAN Singular value ',num2str(Stit)])
        end
        dyn_saveas(f1,[IdentifDirectoryName '/' M_.fname '_MC_ident_pattern_1' ],options_.nodisplay,options_.graph_format);
        if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
            fidTeX = fopen([IdentifDirectoryName '/' M_.fname '_MC_ident_pattern_1.tex'],'w');
            fprintf(fidTeX,'%% TeX eps-loader file generated by plot_identification.m (Dynare).\n');
            fprintf(fidTeX,['%% ' datestr(now,0) '\n\n']);
            fprintf(fidTeX,'\\begin{figure}[H]\n');
            fprintf(fidTeX,'\\centering \n');
            fprintf(fidTeX,'\\includegraphics[width=0.8\\textwidth]{%s_MC_ident_pattern_1}\n',[IdentifDirectoryName '/' M_.fname]);
            fprintf(fidTeX,'\\caption{%s.}',tex_tit_1);
            fprintf(fidTeX,'\\label{Fig:MC_ident_pattern:1}\n');
            fprintf(fidTeX,'\\end{figure}\n\n');
            fprintf(fidTeX,'%% End Of TeX file. \n');
            fclose(fidTeX);
        end
        if nparam>4
            dyn_saveas(f2,[  IdentifDirectoryName '/' M_.fname '_MC_ident_pattern_2' ],options_.nodisplay,options_.graph_format);
            if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
                fidTeX = fopen([  IdentifDirectoryName '/' M_.fname '_MC_ident_pattern_2.tex'],'w');
                fprintf(fidTeX,'%% TeX eps-loader file generated by plot_identification.m (Dynare).\n');
                fprintf(fidTeX,['%% ' datestr(now,0) '\n\n']);
                fprintf(fidTeX,'\\begin{figure}[H]\n');
                fprintf(fidTeX,'\\centering \n');
                fprintf(fidTeX,'\\includegraphics[width=0.8\\textwidth]{%s_MC_ident_pattern_2}\n',[IdentifDirectoryName '/' M_.fname]);
                fprintf(fidTeX,'\\caption{%s.}',tex_tit_2);
                fprintf(fidTeX,'\\label{Fig:MC_ident_pattern:2}\n');
                fprintf(fidTeX,'\\end{figure}\n\n');
                fprintf(fidTeX,'%% End Of TeX file. \n');
                fclose(fidTeX);
            end
        end
    end
end

% disp_identification(params, idemodel, idemoments, name)