1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
function [X,info] = quadratic_matrix_equation_solver(A,B,C,tol,maxit,line_search_flag,X)
%@info:
%! @deftypefn {Function File} {[@var{X1}, @var{info}] =} quadratic_matrix_equation_solver (@var{A},@var{B},@var{C},@var{tol},@var{maxit},@var{line_search_flag},@var{X0})
%! @anchor{logarithmic_reduction}
%! @sp 1
%! Solves the quadratic matrix equation AX^2 + BX + C = 0 with a Newton algorithm.
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item A
%! Square matrix of doubles, n*n.
%! @item B
%! Square matrix of doubles, n*n.
%! @item C
%! Square matrix of doubles, n*n.
%! @item tol
%! Scalar double, tolerance parameter.
%! @item maxit
%! Scalar integer, maximum number of iterations.
%! @item line_search_flag
%! Scalar integer, if nonzero an exact line search algorithm is used.
%! @item X
%! Square matrix of doubles, n*n, initial condition.
%! @end table
%! @sp 1
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item X
%! Square matrix of doubles, n*n, solution of the matrix equation.
%! @item info
%! Scalar integer, if nonzero the algorithm failed in finding the solution of the matrix equation.
%! @end table
%! @sp 2
%! @strong{This function is called by:}
%! @sp 2
%! @strong{This function calls:}
%! @sp 1
%! @ref{fastgensylv}
%! @sp 2
%! @strong{References:}
%! @sp 1
%! N.J. Higham and H.-M. Kim (2001), "Solving a quadratic matrix equation by Newton's method with exact line searches.", in SIAM J. Matrix Anal. Appl., Vol. 23, No. 3, pp. 303-316.
%! @sp 2
%! @end deftypefn
%@eod:
% Copyright (C) 2012-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
provide_initial_condition_to_fastgensylv = 0;
info = 0;
F = eval_quadratic_matrix_equation(A,B,C,X);
if max(max(abs(F)))<tol
return
end
kk = 0.0;
cc = 1+tol;
step_length = 1.0;
while kk<maxit && cc>tol
if provide_initial_condition_to_fastgensylv && exist('H','var')
H = fastgensylv(A*X+B,A,X,F,tol,maxit,H);
else
try
H = fastgensylv(A*X+B,A,X,F,tol,maxit);
catch
X = zeros(length(X));
H = fastgensylv(A*X+B,A,X,F,tol,maxit);
end
end
if line_search_flag
step_length = line_search(A,H,F);
end
X = X + step_length*H;
F = eval_quadratic_matrix_equation(A,B,C,X);
cc = max(max(abs(F)));
kk = kk +1;
end
if cc>tol
X = NaN(size(X));
info = 1;
end
function f = eval_quadratic_matrix_equation(A,B,C,X)
f = C + (B + A*X)*X;
function [p0,p1] = merit_polynomial(A,H,F)
AHH = A*H*H;
gamma = norm(AHH,'fro')^2;
alpha = norm(F,'fro')^2;
beta = trace(F*AHH*AHH*F);
p0 = [gamma, -beta, alpha+beta, -2*alpha, alpha];
p1 = [4*gamma, -3*beta, 2*(alpha+beta), -2*alpha];
function t = line_search(A,H,F)
[p0,p1] = merit_polynomial(A,H,F);
if any(isnan(p0)) || any(isinf(p0))
t = 1.0;
return
end
r = roots(p1);
s = [Inf(3,1),r];
for i = 1:3
if isreal(r(i))
s(i,1) = p0(1)*r(i)^4 + p0(2)*r(i)^3 + p0(3)*r(i)^2 + p0(4)*r(i) + p0(5);
end
end
s = sortrows(s,1);
t = s(1,2);
if t<=1e-12 || t>=2
t = 1;
end
%@test:1
%$ addpath ../matlab
%$
%$ % Set the dimension of the problem to be solved
%$ n = 200;
%$ % Set the equation to be solved
%$ A = eye(n);
%$ B = diag(30*ones(n,1)); B(1,1) = 20; B(end,end) = 20; B = B - diag(10*ones(n-1,1),-1); B = B - diag(10*ones(n-1,1),1);
%$ C = diag(15*ones(n,1)); C = C - diag(5*ones(n-1,1),-1); C = C - diag(5*ones(n-1,1),1);
%$
%$ % Solve the equation with the cycle reduction algorithm
%$ tic, X1 = cycle_reduction(C,B,A,1e-7); toc
%$
%$ % Solve the equation with the logarithmic reduction algorithm
%$ tic, X2 = quadratic_matrix_equation_solver(A,B,C,1e-16,100,1,zeros(n)); toc
%$
%$ % Check the results.
%$ t(1) = dassert(X1,X2,1e-12);
%$
%$ T = all(t);
%@eof:1
|