1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
function [param,sigma] = simulated_moments_estimation(dataset,options,parallel)
% Performs estimation by Simulated Moments Method.
%
% INPUTS:
% xparam [double] p*1 vector of initial values for the estimated parameters.
% dataset [ ] Structure describing the data set.
% options [ ] Structure defining options for SMM.
% parallel [ ] Structure defining the parallel mode settings (optional).
%
% OUTPUTS:
% param [double] p*1 vector of point estimates for the parameters.
% sigma [double] p*p covariance matrix of the SMM estimates.
%
% SPECIAL REQUIREMENTS
% The user has to provide a file where the moment conditions are defined.
% Copyright (C) 2010-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global M_ options_ oo_ estim_params_
% Load the dataset.
eval(dataset.name);
dataset.data = [];
for v = 1:dataset.number_of_observed_variables
eval(['dataset.data = [ dataset.data , ' dataset.variables(v,:) ' ];'])
end
data = dataset.data(dataset.first_observation:dataset.first_observation+dataset.number_of_observations,:);
% Compute sample moments and the weighting matrix.
eval(['[sample_moments,long_run_covariance] = ' M_.fname '_moments;'])
weighting_matrix = inv(long_run_covariance);
% Initialize output.
sigma = [];
param = [];
% Set options and initial condition.
options.estimated_parameters.list = [];
xparam = [];
if ~isempty(estim_params_.var_exo)
options.estimated_variances.idx = estim_params_.var_exo(:,1);
options.estimated_parameters.list = char(M_.exo_names(options.estimated_variances.idx,:));
options.estimated_parameters.nv = rows(estim_params_.var_exo);
xparam = [xparam; estim_params_.var_exo(:,2)];
end
if ~isempty(estim_params_.param_vals)
options.estimated_parameters.idx = estim_params_.param_vals(:,1);
if isempty(options.estimated_parameters.list)
options.estimated_parameters.list = char(M_.param_names(options.estimated_parameters.idx,:));
else
options.estimated_parameters.list = char(options.estimated_parameters.list,...
M_.param_names(options.estimated_parameters.idx,:));
end
options.estimated_parameters.np = rows(estim_params_.param_vals);
xparam = [xparam; estim_params_.param_vals(:,2)];
end
options.estimated_parameters.nb = rows(options.estimated_parameters.list);
options.estimated_parameters.lower_bound = NaN(options.estimated_parameters.nb,1);
options.estimated_parameters.upper_bound = NaN(options.estimated_parameters.nb,1);
options.estimated_parameters.lower_bound = [];
options.estimated_parameters.lower_bound = [options.estimated_parameters.lower_bound; ...
estim_params_.var_exo(:,3); ...
estim_params_.param_vals(:,3) ];
options.estimated_parameters.upper_bound = [];
options.estimated_parameters.upper_bound = [options.estimated_parameters.upper_bound; ...
estim_params_.var_exo(:,4); ...
estim_params_.param_vals(:,4) ];
options.number_of_simulated_sample = 0;
for i=1:length(parallel)
options.number_of_simulated_sample = options.number_of_simulated_sample + parallel(i).number_of_jobs*parallel(i).number_of_simulations;
end
options.observed_variables_idx = dataset.observed_variables_idx;
% Set up parallel mode if needed.
if nargin>2
if ~isunix
error('The parallel version of SMM estimation is not implemented for non unix platforms!')
end
[junk,hostname] = unix('hostname --fqdn');
hostname = deblank(hostname);
master_is_running_a_job = 0;
for i=1:length(parallel)
if strcmpi(hostname,parallel(i).machine)
master_is_running_a_job = 1;
break
end
end
if ~master_is_running_a_job
error('Master has to run one job!');
end
if options.optimization_routine>0
estimated_parameters_optimization_path = [NaN;xparam];
save('optimization_path.mat','estimated_parameters_optimization_path');
end
skipline()
disp('Master talks to its slaves...')
skipline()
% Save the workspace.
save('master_variables.mat','options_','M_','oo_');
% Send the workspace to each remote computer.
skipline()
for i = 1:length(parallel)
if ~strcmpi(hostname,parallel(i).machine)
unix(['scp master_variables.mat ' , parallel(i).login , '@' , parallel(i).machine , ':' parallel(i).folder]);
end
end
for i=1:length(parallel)
% Write a bash script file to execute matlab scripts in the background
fid = fopen('call_matlab_session.sh','w');
fprintf(fid,'#!/bin/sh\n');
fprintf(fid,'unset DISPLAY\n');
fprintf(fid,['cd ' parallel(i).folder '\n']);
fprintf(fid,['nohup ' parallel(i).matlab '/matlab -nodesktop -nodisplay -nojvm < $1 > /dev/null 2>&1\n']);
fprintf(fid,'exit');
fclose(fid);
% Set the permission for this file (has to be executable)
%fileattrib('call_matlab_session.sh','+x','u');
unix(['chmod u+x call_matlab_session.sh']);
% Send the script file on each remote computer
if ~strcmpi(hostname,parallel(i).machine)
unix(['scp call_matlab_session.sh ' , parallel(i).login , '@' , parallel(i).machine , ':~/' ]);
else
unix(['cp call_matlab_session.sh ~/call_matlab_session.sh']);
end
end
% Send the files to each remote computer.
for i = 1:length(parallel)
if ~strcmpi(hostname,parallel(i).machine)
unix(['scp ' M_.fname '_steadystate.m ' , parallel(i).login , '@' , parallel(i).machine , ':' parallel(i).folder]);
unix(['scp ' M_.fname '_moments.m ' , parallel(i).login , '@' , parallel(i).machine , ':' parallel(i).folder]);
unix(['scp ' M_.fname '_static.m ' , parallel(i).login , '@' , parallel(i).machine , ':' parallel(i).folder]);
if exist([M_.fname '_dynamic.c'])
use_dll_flag = 1;
unix(['scp ' M_.fname '_dynamic.c ' , parallel(i).login , '@' , parallel(i).machine , ':' parallel(i).folder]);
else
use_dll_flag = 0;
unix(['scp ' M_.fname '_dynamic.m ' , parallel(i).login , '@' , parallel(i).machine , ':' parallel(i).folder]);
end
end
end
% If needed, compile dynamic model mex file on each remote computer
if ~strcmpi(hostname,parallel(i).machine) && use_dll_flag
% Write a matlab script that will trigger the compilation of the mex file.
fid = fopen('compile_model.m', 'w');
fprintf(fid,[' eval(''mex -O LDFLAGS=''''-pthread -shared -Wl,--no-undefined'''' ' M_.fname '_dynamic.c'') ']);
fprintf(fid, '\n exit');
fclose(fid);
for i = 1:length(parallel)
if ~strcmpi(hostname,parallel(i).machine)
% Send the generated matlab script to the remote computer.
unix(['scp compile_model.m ' , parallel(i).login , '@' , parallel(i).machine , ':' parallel(i).folder]);
% Compile the mex file on the remote computer.
unix(['ssh ' parallel(i).login , '@' , parallel(i).machine ' ./call_matlab_session.sh compile_model.m']);
end
end
end
% Write the matlab script files for the evaluation of the simulated moment conditions
job = 0;
for i=1:length(parallel)
for j=1:parallel(i).number_of_jobs
job = job+1;
% Create random number streams
write_job(hostname, parallel(i).machine, parallel(i).dynare, ...
options.simulated_sample_size, length(sample_moments), ...
dataset.observed_variables_idx, options.estimated_variances.idx', options.estimated_parameters.idx', options.burn_in_periods, [M_.fname '_moments'], parallel(i).number_of_simulations, ...
parallel(i).number_of_threads_per_job, job, j, options.estimated_parameters.nb, options.estimated_parameters.nv, ...
options.estimated_parameters.np);
if ~strcmpi(hostname,parallel(i).machine)
unix(['scp ' , 'job' , int2str(job) , '.m ' , parallel(i).login , '@' , parallel(i).machine , ':' parallel(i).folder ]);
end
end
end
skipline()
disp('... And slaves do as ordered.')
skipline()
if exist('intermediary_results_from_master_and_slaves','dir')
unix('rm -rf intermediary_results_from_master_and_slaves');
end
unix('mkdir intermediary_results_from_master_and_slaves');
unix('chmod -R u+x intermediary_results_from_master_and_slaves');
end
skipline()
if options.optimization_routine==1
% Set options for csminwel.
H0 = 1e-4*eye(options.estimated_parameters.nb);
ct = 1e-4;
it = 1000;
vb = 2;
% Minimization of the objective function.
if nargin==2
[fval,param,grad,hessian_csminwel,itct,fcount,retcodehat] = ...
csminwel1('smm_objective',xparam,H0,[],ct,it,2,options_.gradient_epsilon,sample_moments,weighting_matrix,options);
elseif nargin>2
[fval,param,grad,hessian_csminwel,itct,fcount,retcodehat] = ...
csminwel1('smm_objective',xparam,H0,[],ct,it,2,options_.gradient_epsilon,sample_moments,weighting_matrix,options,parallel);
end
elseif options.optimization_routine==2
optim_options = optimset('display','iter','MaxFunEvals',1000000,'MaxIter',6000,'TolFun',1e-4,'TolX',1e-4);
if isfield(options_,'optim_opt')
eval(['optim_options = optimset(optim_options,' options_.optim_opt ');']);
end
if nargin==2
[param,fval,exitflag] = fminsearch('smm_objective',xparam,optim_options,sample_moments,weighting_matrix,options);
else
[param,fval,exitflag] = fminsearch('smm_objective',xparam,optim_options,sample_moments,weighting_matrix,options,parallel);
end
elseif options.optimization_routine==0% Compute the variance of the SMM estimator
load('optimization_path.mat');
tmp = sortrows(estimated_parameters_optimization_path',1);
param = tmp(1,2:end)';
% Compute gradient of the moment function (distance between sample and simulated moments).
[F,G] = dynare_gradient('moment_function',param,options_.gradient_epsilon,sample_moments,dataset,options,parallel);
V = (1+1/options.number_of_simulated_sample)*G'*long_run_covariance*G;
[param,diag(V)]
elseif options.optimization_routine<0
T = -options.optimization_routine;% length of the simulated time series.
time_series = extended_path(oo_.steady_state,T,1);
save time_series.mat;
end
function write_job(hostname, remotename, dynare_path, sample_size, number_of_moments, observed_variables_idx, variance_idx, parameters_idx, burn_in_periods, moments_file_name, number_of_simulations,threads_per_job, slave_number, job_number,nb,nv,np)
fid = fopen(['job' int2str(slave_number) '.m'],'w');
fprintf(fid,['% Generated by ' hostname '.\n\n']);
if ( strcmpi(hostname,remotename) && (job_number>1) ) || ~strcmpi(hostname,remotename)
fprintf(fid,'load(''master_variables'');\n');
fprintf(fid,'assignin(''base'',''M_'',M_);\n');
fprintf(fid,'assignin(''base'',''oo_'',oo_);\n');
fprintf(fid,'assignin(''base'',''options_'',options_);\n\n');
end
if ( strcmpi(hostname,remotename) && (job_number>1) ) || ~strcmpi(hostname,remotename)
fprintf(fid,['addpath ' dynare_path '\n']);
fprintf(fid,['dynare_config;\n\n']);
end
fprintf(fid,['simulated_moments = zeros(' int2str(number_of_moments) ',1);\n\n']);
fprintf(fid,'load(''estimated_parameters.mat'');\n');
fprintf(fid,['M_.params([' num2str(parameters_idx) ']) = xparams(' int2str(nv) '+1:' int2str(nb) ');\n\n']);
fprintf(fid,'tmp = diag(M_.Sigma_e);')
fprintf(fid,['tmp([' num2str(variance_idx) ']) = xparams(1:' int2str(nv) ').^2;\n\n']);
fprintf(fid,'M_.Sigma_e = diag(tmp);')
fprintf(fid,['stream=RandStream(''mt19937ar'',''Seed'',' int2str(slave_number) ');\n']);
if matlab_ver_less_than('7.12')
fprintf(fid,['RandStream.setDefaultStream(stream);\n\n']);
else
fprintf(fid,['RandStream.setGlobalStream(stream);\n\n']);
end
fprintf(fid,['maxNumCompThreads(' int2str(threads_per_job) ');\n\n']);
fprintf(fid,['for s = 1:' int2str(number_of_simulations) '\n'] );
fprintf(fid,[' time_series = extended_path([],' int2str(sample_size) ',1);\n']);
fprintf(fid,[' data = time_series([' int2str(observed_variables_idx) '],' int2str(burn_in_periods) '+1:' int2str(sample_size) ');\n']);
fprintf(fid,[' eval(''tmp = ' moments_file_name '(data);'');\n']);
fprintf(fid,[' simulated_moments = simulated_moments + tmp;\n']);
fprintf(fid,['end\n\n']);
fprintf(fid,['simulated_moments = simulated_moments/' int2str(number_of_simulations) ';\n']);
fprintf(fid,['save(''simulated_moments_slave_' int2str(slave_number) '.dat'',''simulated_moments'',''-ascii'');\n']);
if ~strcmpi(hostname,remotename)
fprintf(fid,['unix(''scp simulated_moments_slave_' int2str(slave_number) '.dat ' hostname ':' pwd '/intermediary_results_from_master_and_slaves '');\n']);
fprintf(fid,['unix(''rm simulated_moments_slave_' int2str(slave_number) '.dat'');\n']);
else
fprintf(fid,['unix(''cp simulated_moments_slave_' int2str(slave_number) '.dat ' 'intermediary_results_from_master_and_slaves '');\n']);
fprintf(fid,['unix(''rm simulated_moments_slave_' int2str(slave_number) '.dat'');\n']);
end
if ((job_number>1) && strcmpi(hostname,remotename)) || ~strcmpi(hostname,remotename)
fprintf(fid,'exit');
end
fclose(fid);
|