File: distinguishable_colors.m

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (168 lines) | stat: -rw-r--r-- 6,393 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
function colors = distinguishable_colors(n_colors,bg,func)
% DISTINGUISHABLE_COLORS: pick colors that are maximally perceptually distinct
%
% When plotting a set of lines, you may want to distinguish them by color.
% By default, Matlab chooses a small set of colors and cycles among them,
% and so if you have more than a few lines there will be confusion about
% which line is which. To fix this problem, one would want to be able to
% pick a much larger set of distinct colors, where the number of colors
% equals or exceeds the number of lines you want to plot. Because our
% ability to distinguish among colors has limits, one should choose these
% colors to be "maximally perceptually distinguishable."
%
% This function generates a set of colors which are distinguishable
% by reference to the "Lab" color space, which more closely matches
% human color perception than RGB. Given an initial large list of possible
% colors, it iteratively chooses the entry in the list that is farthest (in
% Lab space) from all previously-chosen entries. While this "greedy"
% algorithm does not yield a global maximum, it is simple and efficient.
% Moreover, the sequence of colors is consistent no matter how many you
% request, which facilitates the users' ability to learn the color order
% and avoids major changes in the appearance of plots when adding or
% removing lines.
%
% Syntax:
%   colors = distinguishable_colors(n_colors)
% Specify the number of colors you want as a scalar, n_colors. This will
% generate an n_colors-by-3 matrix, each row representing an RGB
% color triple. If you don't precisely know how many you will need in
% advance, there is no harm (other than execution time) in specifying
% slightly more than you think you will need.
%
%   colors = distinguishable_colors(n_colors,bg)
% This syntax allows you to specify the background color, to make sure that
% your colors are also distinguishable from the background. Default value
% is white. bg may be specified as an RGB triple or as one of the standard
% "ColorSpec" strings. You can even specify multiple colors:
%     bg = {'w','k'}
% or
%     bg = [1 1 1; 0 0 0]
% will only produce colors that are distinguishable from both white and
% black.
%
%   colors = distinguishable_colors(n_colors,bg,rgb2labfunc)
% By default, distinguishable_colors uses the image processing toolbox's
% color conversion functions makecform and applycform. Alternatively, you
% can supply your own color conversion function.
%
% Example:
%   c = distinguishable_colors(25);
%   figure
%   image(reshape(c,[1 size(c)]))
%
% Example using the file exchange's 'colorspace':
%   func = @(x) colorspace('RGB->Lab',x);
%   c = distinguishable_colors(25,'w',func);
    
% Copyright (C) 2005-2010 2010-2011 by Timothy E. Holy
% Copyright (C) 2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

% Parse the inputs
if (nargin < 2)
    bg = [1 1 1];  % default white background
else
    if iscell(bg)
        % User specified a list of colors as a cell aray
        bgc = bg;
        for i = 1:length(bgc)
            bgc{i} = parsecolor(bgc{i});
        end
        bg = cat(1,bgc{:});
    else
        % User specified a numeric array of colors (n-by-3)
        bg = parsecolor(bg);
    end
end

% Generate a sizable number of RGB triples. This represents our space of
% possible choices. By starting in RGB space, we ensure that all of the
% colors can be generated by the monitor.
n_grid = 30;  % number of grid divisions along each axis in RGB space
x = linspace(0,1,n_grid);
[R,G,B] = ndgrid(x,x,x);
rgb = [R(:) G(:) B(:)];
if (n_colors > size(rgb,1)/3)
    error('You can''t readily distinguish that many colors');
end

% Convert to Lab color space, which more closely represents human
% perception
if (nargin > 2)
    lab = func(rgb);
    bglab = func(bg);
else
    C = makecform('srgb2lab');
    lab = applycform(rgb,C);
    bglab = applycform(bg,C);
end

% If the user specified multiple background colors, compute distances
% from the candidate colors to the background colors
mindist2 = inf(size(rgb,1),1);
for i = 1:size(bglab,1)-1
    dX = bsxfun(@minus,lab,bglab(i,:)); % displacement all colors from bg
    dist2 = sum(dX.^2,2);  % square distance
    mindist2 = min(dist2,mindist2);  % dist2 to closest previously-chosen color
end

% Iteratively pick the color that maximizes the distance to the nearest
% already-picked color
colors = zeros(n_colors,3);
lastlab = bglab(end,:);   % initialize by making the "previous" color equal to background
for i = 1:n_colors
    dX = bsxfun(@minus,lab,lastlab); % displacement of last from all colors on list
    dist2 = sum(dX.^2,2);  % square distance
    mindist2 = min(dist2,mindist2);  % dist2 to closest previously-chosen color
    [junk,index] = max(mindist2);  % find the entry farthest from all previously-chosen colors
    colors(i,:) = rgb(index,:);  % save for output
    lastlab = lab(index,:);  % prepare for next iteration
end
end

function c = parsecolor(s)
if ischar(s)
    c = colorstr2rgb(s);
elseif isnumeric(s) && size(s,2) == 3
    c = s;
else
    error('MATLAB:InvalidColorSpec','Color specification cannot be parsed.');
end
end

function c = colorstr2rgb(c)
% Convert a color string to an RGB value.
% This is cribbed from Matlab's whitebg function.
% Why don't they make this a stand-alone function?
rgbspec = [1 0 0;0 1 0;0 0 1;1 1 1;0 1 1;1 0 1;1 1 0;0 0 0];
cspec = 'rgbwcmyk';
k = find(cspec==c(1));
if isempty(k)
    error('MATLAB:InvalidColorString','Unknown color string.');
end
if k~=3 || length(c)==1
    c = rgbspec(k,:);
elseif length(c)>2
    if strcmpi(c(1:3),'bla')
        c = [0 0 0];
    elseif strcmpi(c(1:3),'blu')
        c = [0 0 1];
    else
        error('MATLAB:UnknownColorString', 'Unknown color string.');
    end
end
end