1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
|
/* Quasi Monte Carlo sequences (à la Sobol).
**
** Original files downloaded from http://people.sc.fsu.edu/~burkardt/cpp_src/sobol/ (version 17-Feb-2009 09:46)
**
** Copyright (C) 2009 John Burkardt
** Copyright (C) 2010-2017 Dynare Team
**
** This program is free software: you can redistribute it and/or modify
** it under the terms of the GNU Lesser General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU Lesser General Public License for more details.
**
** You should have received a copy of the GNU Lesser General Public License
** along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cstdlib>
#include <iostream>
#include <iomanip>
#include <cmath>
#include <ctime>
#include "initialize_v_array.hh"
using namespace std;
#define DIM_MAX 1111
template<typename T>
int
bit_hi1(T n)
/*
** This function returns the position of the high 1 bit base 2 in an integer.
**
** Example:
**
** N Binary Hi 1
** ---- -------- ----
** 0 0 0
** 1 1 1
** 2 10 2
** 3 11 2
** 4 100 3
** 5 101 3
** 6 110 3
** 7 111 3
** 8 1000 4
** 9 1001 4
** 10 1010 4
** 11 1011 4
** 12 1100 4
** 13 1101 4
** 14 1110 4
** 15 1111 4
** 16 10000 5
** 17 10001 5
** 1023 1111111111 10
** 1024 10000000000 11
** 1025 10000000001 11
**
**
** Original files downloaded from http://people.sc.fsu.edu/~burkardt/cpp_src/sobol/ (version 17-Feb-2009 09:46)
**
** Input, int or long long, the integer to be measured.
** N should be nonnegative. If N is nonpositive, BIT_HI1 will always be 0.
**
** Output: the location of the high order bit.
*/
{
int bit = 0;
while (n > 0)
{
bit++;
n = n/2;
}
return bit;
}
template<typename T>
int
bit_lo0(T n)
/*
** This function returns the position of the low 0 bit base 2 in an integer.
**
** Example:
**
** N Binary Lo 0
** ---- -------- ----
** 0 0 1
** 1 1 2
** 2 10 1
** 3 11 3
** 4 100 1
** 5 101 2
** 6 110 1
** 7 111 4
** 8 1000 1
** 9 1001 2
** 10 1010 1
** 11 1011 3
** 12 1100 1
** 13 1101 2
** 14 1110 1
** 15 1111 5
** 16 10000 1
** 17 10001 2
** 1023 1111111111 1
** 1024 10000000000 1
** 1025 10000000001 1
**
**
** Original files downloaded from http://people.sc.fsu.edu/~burkardt/cpp_src/sobol/ (version 17-Feb-2009 09:46)
**
** INPUTS
**
** Input, int N, the integer to be measured.
** N should be nonnegative.
**
** OUTPUTS (int) the position of the low 0 bit.
*/
{
int bit = 0;
while (true)
{
bit++;
T n2 = n/2;
if (n == 2*n2)
{
break;
}
n = n2;
}
return bit;
}
template<typename T>
T
ixor(T i, T j)
/*
** This function calculates the exclusive OR of two integers.
**
** Original files downloaded from http://people.sc.fsu.edu/~burkardt/cpp_src/sobol/ (version 17-Feb-2009 09:46)
**
** INPUTS I, J, two integer to be exclusive OR-ed.
**
** OUTPUTS (integer) the exclusive OR of I and J.
*/
{
T k = 0;
T l = 1;
while (i != 0 || j != 0)
{
T i2 = i / 2;
T j2 = j / 2;
if (
((i == 2 * i2) && (j != 2 * j2))
|| ((i != 2 * i2) && (j == 2 * j2)))
{
k = k + l;
}
i = i2;
j = j2;
l = 2 * l;
}
return k;
}
template<typename T1, typename T2>
void
next_sobol(int dim_num, T1 *seed, T2 *quasi)
/*
** This function generates a new quasirandom Sobol vector with each call.
**
** Discussion:
**
** The routine adapts the ideas of Antonov and Saleev.
**
** This routine uses LONG LONG INT for integers and DOUBLE for real values or
** INT for integers and FLOAT for real values.
**
** Thanks to Steffan Berridge for supplying (twice) the properly
** formatted V data needed to extend the original routine's dimension
** limit from 40 to 1111, 05 June 2007.
**
** Thanks to Francis Dalaudier for pointing out that the range of allowed
** values of DIM_NUM should start at 1, not 2! 17 February 2009.
**
** Original files downloaded from http://people.sc.fsu.edu/~burkardt/cpp_src/sobol/ (version 17-Feb-2009 09:46)
**
** Reference:
**
** IA Antonov, VM Saleev,
** An Economic Method of Computing LP Tau-Sequences,
** USSR Computational Mathematics and Mathematical Physics,
** Volume 19, 1980, pages 252 - 256.
**
** Paul Bratley, Bennett Fox,
** Algorithm 659:
** Implementing Sobol's Quasirandom Sequence Generator,
** ACM Transactions on Mathematical Software,
** Volume 14, Number 1, pages 88-100, 1988.
**
** Bennett Fox,
** Algorithm 647:
** Implementation and Relative Efficiency of Quasirandom
** Sequence Generators,
** ACM Transactions on Mathematical Software,
** Volume 12, Number 4, pages 362-376, 1986.
**
** Stephen Joe, Frances Kuo
** Remark on Algorithm 659:
** Implementing Sobol's Quasirandom Sequence Generator,
** ACM Transactions on Mathematical Software,
** Volume 29, Number 1, pages 49-57, March 2003.
**
** Ilya Sobol,
** USSR Computational Mathematics and Mathematical Physics,
** Volume 16, pages 236-242, 1977.
**
** Ilya Sobol, YL Levitan,
** The Production of Points Uniformly Distributed in a Multidimensional
** Cube (in Russian),
** Preprint IPM Akad. Nauk SSSR,
** Number 40, Moscow 1976.
**
** Parameters:
**
** Input, int DIM_NUM, the number of spatial dimensions.
** DIM_NUM must satisfy 1 <= DIM_NUM <= 1111.
**
** Input/output, long long int *SEED, the "seed" for the sequence.
** This is essentially the index in the sequence of the quasirandom
** value to be generated. On output, SEED has been set to the
** appropriate next value, usually simply SEED+1.
** If SEED is less than 0 on input, it is treated as though it were 0.
** An input value of 0 requests the first (0-th) element of the sequence.
**
** Output, double QUASI[DIM_NUM], the next quasirandom vector.
*/
{
static T1 atmost;
static int dim_num_save = 0;
int LOG_MAX = sizeof(T1)*8-2;
bool includ[LOG_MAX];
static bool initialized = false;
static T1 lastq[DIM_MAX];
static T1 maxcol;
T1 l = 0;
static T1 poly[DIM_MAX] =
{
1, 3, 7, 11, 13, 19, 25, 37, 59, 47,
61, 55, 41, 67, 97, 91, 109, 103, 115, 131,
193, 137, 145, 143, 241, 157, 185, 167, 229, 171,
213, 191, 253, 203, 211, 239, 247, 285, 369, 299,
301, 333, 351, 355, 357, 361, 391, 397, 425, 451,
463, 487, 501, 529, 539, 545, 557, 563, 601, 607,
617, 623, 631, 637, 647, 661, 675, 677, 687, 695,
701, 719, 721, 731, 757, 761, 787, 789, 799, 803,
817, 827, 847, 859, 865, 875, 877, 883, 895, 901,
911, 949, 953, 967, 971, 973, 981, 985, 995, 1001,
1019, 1033, 1051, 1063, 1069, 1125, 1135, 1153, 1163, 1221,
1239, 1255, 1267, 1279, 1293, 1305, 1315, 1329, 1341, 1347,
1367, 1387, 1413, 1423, 1431, 1441, 1479, 1509, 1527, 1531,
1555, 1557, 1573, 1591, 1603, 1615, 1627, 1657, 1663, 1673,
1717, 1729, 1747, 1759, 1789, 1815, 1821, 1825, 1849, 1863,
1869, 1877, 1881, 1891, 1917, 1933, 1939, 1969, 2011, 2035,
2041, 2053, 2071, 2091, 2093, 2119, 2147, 2149, 2161, 2171,
2189, 2197, 2207, 2217, 2225, 2255, 2257, 2273, 2279, 2283,
2293, 2317, 2323, 2341, 2345, 2363, 2365, 2373, 2377, 2385,
2395, 2419, 2421, 2431, 2435, 2447, 2475, 2477, 2489, 2503,
2521, 2533, 2551, 2561, 2567, 2579, 2581, 2601, 2633, 2657,
2669, 2681, 2687, 2693, 2705, 2717, 2727, 2731, 2739, 2741,
2773, 2783, 2793, 2799, 2801, 2811, 2819, 2825, 2833, 2867,
2879, 2881, 2891, 2905, 2911, 2917, 2927, 2941, 2951, 2955,
2963, 2965, 2991, 2999, 3005, 3017, 3035, 3037, 3047, 3053,
3083, 3085, 3097, 3103, 3159, 3169, 3179, 3187, 3205, 3209,
3223, 3227, 3229, 3251, 3263, 3271, 3277, 3283, 3285, 3299,
3305, 3319, 3331, 3343, 3357, 3367, 3373, 3393, 3399, 3413,
3417, 3427, 3439, 3441, 3475, 3487, 3497, 3515, 3517, 3529,
3543, 3547, 3553, 3559, 3573, 3589, 3613, 3617, 3623, 3627,
3635, 3641, 3655, 3659, 3669, 3679, 3697, 3707, 3709, 3713,
3731, 3743, 3747, 3771, 3791, 3805, 3827, 3833, 3851, 3865,
3889, 3895, 3933, 3947, 3949, 3957, 3971, 3985, 3991, 3995,
4007, 4013, 4021, 4045, 4051, 4069, 4073, 4179, 4201, 4219,
4221, 4249, 4305, 4331, 4359, 4383, 4387, 4411, 4431, 4439,
4449, 4459, 4485, 4531, 4569, 4575, 4621, 4663, 4669, 4711,
4723, 4735, 4793, 4801, 4811, 4879, 4893, 4897, 4921, 4927,
4941, 4977, 5017, 5027, 5033, 5127, 5169, 5175, 5199, 5213,
5223, 5237, 5287, 5293, 5331, 5391, 5405, 5453, 5523, 5573,
5591, 5597, 5611, 5641, 5703, 5717, 5721, 5797, 5821, 5909,
5913, 5955, 5957, 6005, 6025, 6061, 6067, 6079, 6081, 6231,
6237, 6289, 6295, 6329, 6383, 6427, 6453, 6465, 6501, 6523,
6539, 6577, 6589, 6601, 6607, 6631, 6683, 6699, 6707, 6761,
6795, 6865, 6881, 6901, 6923, 6931, 6943, 6999, 7057, 7079,
7103, 7105, 7123, 7173, 7185, 7191, 7207, 7245, 7303, 7327,
7333, 7355, 7365, 7369, 7375, 7411, 7431, 7459, 7491, 7505,
7515, 7541, 7557, 7561, 7701, 7705, 7727, 7749, 7761, 7783,
7795, 7823, 7907, 7953, 7963, 7975, 8049, 8089, 8123, 8125,
8137, 8219, 8231, 8245, 8275, 8293, 8303, 8331, 8333, 8351,
8357, 8367, 8379, 8381, 8387, 8393, 8417, 8435, 8461, 8469,
8489, 8495, 8507, 8515, 8551, 8555, 8569, 8585, 8599, 8605,
8639, 8641, 8647, 8653, 8671, 8675, 8689, 8699, 8729, 8741,
8759, 8765, 8771, 8795, 8797, 8825, 8831, 8841, 8855, 8859,
8883, 8895, 8909, 8943, 8951, 8955, 8965, 8999, 9003, 9031,
9045, 9049, 9071, 9073, 9085, 9095, 9101, 9109, 9123, 9129,
9137, 9143, 9147, 9185, 9197, 9209, 9227, 9235, 9247, 9253,
9257, 9277, 9297, 9303, 9313, 9325, 9343, 9347, 9371, 9373,
9397, 9407, 9409, 9415, 9419, 9443, 9481, 9495, 9501, 9505,
9517, 9529, 9555, 9557, 9571, 9585, 9591, 9607, 9611, 9621,
9625, 9631, 9647, 9661, 9669, 9679, 9687, 9707, 9731, 9733,
9745, 9773, 9791, 9803, 9811, 9817, 9833, 9847, 9851, 9863,
9875, 9881, 9905, 9911, 9917, 9923, 9963, 9973, 10003, 10025,
10043, 10063, 10071, 10077, 10091, 10099, 10105, 10115, 10129, 10145,
10169, 10183, 10187, 10207, 10223, 10225, 10247, 10265, 10271, 10275,
10289, 10299, 10301, 10309, 10343, 10357, 10373, 10411, 10413, 10431,
10445, 10453, 10463, 10467, 10473, 10491, 10505, 10511, 10513, 10523,
10539, 10549, 10559, 10561, 10571, 10581, 10615, 10621, 10625, 10643,
10655, 10671, 10679, 10685, 10691, 10711, 10739, 10741, 10755, 10767,
10781, 10785, 10803, 10805, 10829, 10857, 10863, 10865, 10875, 10877,
10917, 10921, 10929, 10949, 10967, 10971, 10987, 10995, 11009, 11029,
11043, 11045, 11055, 11063, 11075, 11081, 11117, 11135, 11141, 11159,
11163, 11181, 11187, 11225, 11237, 11261, 11279, 11297, 11307, 11309,
11327, 11329, 11341, 11377, 11403, 11405, 11413, 11427, 11439, 11453,
11461, 11473, 11479, 11489, 11495, 11499, 11533, 11545, 11561, 11567,
11575, 11579, 11589, 11611, 11623, 11637, 11657, 11663, 11687, 11691,
11701, 11747, 11761, 11773, 11783, 11795, 11797, 11817, 11849, 11855,
11867, 11869, 11873, 11883, 11919, 11921, 11927, 11933, 11947, 11955,
11961, 11999, 12027, 12029, 12037, 12041, 12049, 12055, 12095, 12097,
12107, 12109, 12121, 12127, 12133, 12137, 12181, 12197, 12207, 12209,
12239, 12253, 12263, 12269, 12277, 12287, 12295, 12309, 12313, 12335,
12361, 12367, 12391, 12409, 12415, 12433, 12449, 12469, 12479, 12481,
12499, 12505, 12517, 12527, 12549, 12559, 12597, 12615, 12621, 12639,
12643, 12657, 12667, 12707, 12713, 12727, 12741, 12745, 12763, 12769,
12779, 12781, 12787, 12799, 12809, 12815, 12829, 12839, 12857, 12875,
12883, 12889, 12901, 12929, 12947, 12953, 12959, 12969, 12983, 12987,
12995, 13015, 13019, 13031, 13063, 13077, 13103, 13137, 13149, 13173,
13207, 13211, 13227, 13241, 13249, 13255, 13269, 13283, 13285, 13303,
13307, 13321, 13339, 13351, 13377, 13389, 13407, 13417, 13431, 13435,
13447, 13459, 13465, 13477, 13501, 13513, 13531, 13543, 13561, 13581,
13599, 13605, 13617, 13623, 13637, 13647, 13661, 13677, 13683, 13695,
13725, 13729, 13753, 13773, 13781, 13785, 13795, 13801, 13807, 13825,
13835, 13855, 13861, 13871, 13883, 13897, 13905, 13915, 13939, 13941,
13969, 13979, 13981, 13997, 14027, 14035, 14037, 14051, 14063, 14085,
14095, 14107, 14113, 14125, 14137, 14145, 14151, 14163, 14193, 14199,
14219, 14229, 14233, 14243, 14277, 14287, 14289, 14295, 14301, 14305,
14323, 14339, 14341, 14359, 14365, 14375, 14387, 14411, 14425, 14441,
14449, 14499, 14513, 14523, 14537, 14543, 14561, 14579, 14585, 14593,
14599, 14603, 14611, 14641, 14671, 14695, 14701, 14723, 14725, 14743,
14753, 14759, 14765, 14795, 14797, 14803, 14831, 14839, 14845, 14855,
14889, 14895, 14909, 14929, 14941, 14945, 14951, 14963, 14965, 14985,
15033, 15039, 15053, 15059, 15061, 15071, 15077, 15081, 15099, 15121,
15147, 15149, 15157, 15167, 15187, 15193, 15203, 15205, 15215, 15217,
15223, 15243, 15257, 15269, 15273, 15287, 15291, 15313, 15335, 15347,
15359, 15373, 15379, 15381, 15391, 15395, 15397, 15419, 15439, 15453,
15469, 15491, 15503, 15517, 15527, 15531, 15545, 15559, 15593, 15611,
15613, 15619, 15639, 15643, 15649, 15661, 15667, 15669, 15681, 15693,
15717, 15721, 15741, 15745, 15765, 15793, 15799, 15811, 15825, 15835,
15847, 15851, 15865, 15877, 15881, 15887, 15899, 15915, 15935, 15937,
15955, 15973, 15977, 16011, 16035, 16061, 16069, 16087, 16093, 16097,
16121, 16141, 16153, 16159, 16165, 16183, 16189, 16195, 16197, 16201,
16209, 16215, 16225, 16259, 16265, 16273, 16299, 16309, 16355, 16375,
16381
};
static T2 recipd;
static T1 seed_save = -1;
static T1 **v;
if (!initialized || dim_num != dim_num_save)
{
v = new T1 *[DIM_MAX];
for (int i = 0; i < DIM_MAX; i++)
v[i] = new T1[LOG_MAX];
initialized = true;
initialize_v_array(DIM_MAX, LOG_MAX, v);
/*
** Check parameters.
*/
if (dim_num < 1 || DIM_MAX < dim_num)
{
cout << "\n";
cout << "NEXT_SOBOL - Fatal error!\n";
cout << " The spatial dimension DIM_NUM should satisfy:\n";
cout << " 1 <= DIM_NUM <= " << DIM_MAX << "\n";
cout << " But this input value is DIM_NUM = " << dim_num << "\n";
exit(1);
}
dim_num_save = dim_num;
/*
** Set ATMOST = 2^LOG_MAX - 1.
*/
atmost = (T1) 0;
for (int i = 1; i <= LOG_MAX; i++)
atmost = 2 * atmost + 1;
/*
** Find the highest 1 bit in ATMOST (should be LOG_MAX).
*/
maxcol = bit_hi1(atmost);
/*
** Initialize row 1 of V.
*/
for (T1 j = 0; j < maxcol; j++)
{
v[0][j] = (T1) 1;
}
/*
** Initialize the remaining rows of V.
*/
for (int i = 1; i < dim_num; i++)
{
/*
** The bit pattern of the integer POLY(I) gives the form
** of polynomial I.
**
** Find the degree of polynomial I from binary encoding.
*/
T1 j = poly[i];
T1 m = 0;
while (true)
{
j = j / 2;
if (j <= 0)
{
break;
}
m = m + 1;
}
/*
** We expand this bit pattern to separate components
** of the logical array INCLUD.
*/
j = poly[i];
for (T1 k = m-1; 0 <= k; k--)
{
T1 j2 = j / 2;
includ[k] = (j != (2 * j2));
j = j2;
}
/*
** Calculate the remaining elements of row I as explained
** in Bratley and Fox, section 2.
**
** Some tricky indexing here. Did I change it correctly?
*/
for (j = m; j < maxcol; j++)
{
T1 newv = v[i][j-m];
l = 1;
for (T1 k = 0; k < m; k++)
{
l = 2 * l;
if (includ[k])
{
newv = (newv ^ (l * v[i][j-k-1]));
}
}
v[i][j] = newv;
}
}
/*
** Multiply columns of V by appropriate power of 2.
*/
l = 1;
for (T1 j = maxcol - 2; 0 <= j; j--)
{
l = 2 * l;
for (int i = 0; i < dim_num; i++)
{
v[i][j] = v[i][j] * l;
}
}
/*
** RECIPD is 1/(common denominator of the elements in V).
*/
recipd = 1.0E+00 / ((T2) (2 * l));
}
if (*seed < 0)
*seed = 0;
if (*seed == 0)
{
l = 1;
for (int i = 0; i < dim_num; i++)
{
lastq[i] = 0;
}
}
else if (*seed == seed_save + 1)
{
l = bit_lo0(*seed);
}
else if (*seed <= seed_save)
{
seed_save = 0;
l = 1;
for (int i = 0; i < dim_num; i++)
lastq[i] = 0;
for (T1 seed_temp = seed_save; seed_temp <= (*seed)-1; seed_temp++)
{
l = bit_lo0(seed_temp);
for (int i = 0; i < dim_num; i++)
{
lastq[i] = (lastq[i] ^ v[i][l-1]);
}
}
l = bit_lo0(*seed);
}
else if (seed_save+1 < *seed)
{
for (T1 seed_temp = seed_save+1; seed_temp <= (*seed)-1; seed_temp++)
{
l = bit_lo0(seed_temp);
for (int i = 0; i < dim_num; i++)
{
lastq[i] = (lastq[i] ^ v[i][l-1]);
}
}
l = bit_lo0(*seed);
}
/*
** Check that the user is not calling too many times!
*/
if (maxcol < l)
{
cout << "\n";
cout << "NEXT_SOBOL - Fatal error!\n";
cout << " The value of SEED seems to be too large!\n";
cout << " SEED = " << *seed << "\n";
cout << " MAXCOL = " << maxcol << "\n";
cout << " L = " << l << "\n";
exit(2);
}
/*
** Calculate the new components of QUASI.
** The caret indicates the bitwise exclusive OR.
*/
for (int i = 0; i < dim_num; i++)
{
quasi[i] = ((T2) lastq[i]) * recipd;
lastq[i] = (lastq[i]^v[i][l-1]);
}
seed_save = *seed;
*seed = *seed + 1;
return;
}
template<typename T1, typename T2>
T1
sobol_block(int dimension, int block_size, T1 seed, T2 *block)
{
for (int iter = 0; iter < block_size; iter++)
{
next_sobol(dimension, &seed, &block[iter*dimension]);
}
return seed;
}
template<typename T>
void
expand_unit_hypercube(int dimension, int block_size, T *block, T *lower_bound, T *upper_bound)
{
T *hypercube_length = new T[dimension];
for (int dim = 0; dim < dimension; dim++)
{
hypercube_length[dim] = upper_bound[dim]-lower_bound[dim];
}
int base = 0;
for (int sim = 0; sim < block_size; sim++)
{
for (int dim = 0; dim < dimension; dim++)
{
block[base+dim] = lower_bound[dim] + hypercube_length[dim]*block[base+dim];
}
base += dimension;
}
delete[] hypercube_length;
}
#undef DIM_MAX
|