File: sobol.hh

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (582 lines) | stat: -rw-r--r-- 20,411 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
/* Quasi Monte Carlo sequences (à la Sobol).
**
** Original files downloaded from http://people.sc.fsu.edu/~burkardt/cpp_src/sobol/ (version 17-Feb-2009 09:46)
**
** Copyright (C) 2009 John Burkardt
** Copyright (C) 2010-2017 Dynare Team
**
** This program is free software: you can redistribute it and/or modify
** it under the terms of the GNU Lesser General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
** GNU Lesser General Public License for more details.
**
** You should have received a copy of the GNU Lesser General Public License
** along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include <cstdlib>
#include <iostream>
#include <iomanip>
#include <cmath>
#include <ctime>

#include "initialize_v_array.hh"

using namespace std;

#define DIM_MAX 1111

template<typename T>
int
bit_hi1(T n)
/*
** This function returns the position of the high 1 bit base 2 in an integer.
**
** Example:
**
**       N    Binary    Hi 1
**    ----    --------  ----
**       0           0     0
**       1           1     1
**       2          10     2
**       3          11     2
**       4         100     3
**       5         101     3
**       6         110     3
**       7         111     3
**       8        1000     4
**       9        1001     4
**      10        1010     4
**      11        1011     4
**      12        1100     4
**      13        1101     4
**      14        1110     4
**      15        1111     4
**      16       10000     5
**      17       10001     5
**    1023  1111111111    10
**    1024 10000000000    11
**    1025 10000000001    11
**
**
**  Original files downloaded from http://people.sc.fsu.edu/~burkardt/cpp_src/sobol/ (version 17-Feb-2009 09:46)
**
**    Input, int or long long, the integer to be measured.
**    N should be nonnegative.  If N is nonpositive, BIT_HI1 will always be 0.
**
**    Output: the location of the high order bit.
*/
{
  int bit = 0;
  while (n > 0)
    {
      bit++;
      n = n/2;
    }
  return bit;
}

template<typename T>
int
bit_lo0(T n)
/*
**  This function returns the position of the low 0 bit base 2 in an integer.
**
**  Example:
**
**       N    Binary    Lo 0
**    ----    --------  ----
**       0           0     1
**       1           1     2
**       2          10     1
**       3          11     3
**       4         100     1
**       5         101     2
**       6         110     1
**       7         111     4
**       8        1000     1
**       9        1001     2
**      10        1010     1
**      11        1011     3
**      12        1100     1
**      13        1101     2
**      14        1110     1
**      15        1111     5
**      16       10000     1
**      17       10001     2
**    1023  1111111111     1
**    1024 10000000000     1
**    1025 10000000001     1
**
**
**  Original files downloaded from http://people.sc.fsu.edu/~burkardt/cpp_src/sobol/ (version 17-Feb-2009 09:46)
**
**  INPUTS
**
**    Input, int N, the integer to be measured.
**    N should be nonnegative.
**
**  OUTPUTS (int) the position of the low 0 bit.
*/
{
  int bit = 0;
  while (true)
    {
      bit++;
      T n2 = n/2;
      if (n == 2*n2)
        {
          break;
        }
      n = n2;
    }
  return bit;
}

template<typename T>
T
ixor(T i, T j)
/*
**  This function  calculates the exclusive OR of two integers.
**
**  Original files downloaded from http://people.sc.fsu.edu/~burkardt/cpp_src/sobol/ (version 17-Feb-2009 09:46)
**
**  INPUTS  I, J, two integer to be exclusive OR-ed.
**
**  OUTPUTS (integer) the exclusive OR of I and J.
*/
{
  T k = 0;
  T l = 1;
  while (i != 0 || j != 0)
    {
      T i2 = i / 2;
      T j2 = j / 2;
      if (
          ((i == 2 * i2) && (j != 2 * j2))
          || ((i != 2 * i2) && (j == 2 * j2)))
        {
          k = k + l;
        }
      i = i2;
      j = j2;
      l = 2 * l;
    }
  return k;
}

template<typename T1, typename T2>
void
next_sobol(int dim_num, T1 *seed, T2 *quasi)
/*
**  This function generates a new quasirandom Sobol vector with each call.
**
**  Discussion:
**
**    The routine adapts the ideas of Antonov and Saleev.
**
**    This routine uses LONG LONG INT for integers and DOUBLE for real values or
**                                INT for integers and FLOAT  for real values.
**
**    Thanks to Steffan Berridge for supplying (twice) the properly
**    formatted V data needed to extend the original routine's dimension
**    limit from 40 to 1111, 05 June 2007.
**
**    Thanks to Francis Dalaudier for pointing out that the range of allowed
**    values of DIM_NUM should start at 1, not 2!  17 February 2009.
**
**  Original files downloaded from http://people.sc.fsu.edu/~burkardt/cpp_src/sobol/ (version 17-Feb-2009 09:46)
**
**  Reference:
**
**    IA Antonov, VM Saleev,
**    An Economic Method of Computing LP Tau-Sequences,
**    USSR Computational Mathematics and Mathematical Physics,
**    Volume 19, 1980, pages 252 - 256.
**
**    Paul Bratley, Bennett Fox,
**    Algorithm 659:
**    Implementing Sobol's Quasirandom Sequence Generator,
**    ACM Transactions on Mathematical Software,
**    Volume 14, Number 1, pages 88-100, 1988.
**
**    Bennett Fox,
**    Algorithm 647:
**    Implementation and Relative Efficiency of Quasirandom
**    Sequence Generators,
**    ACM Transactions on Mathematical Software,
**    Volume 12, Number 4, pages 362-376, 1986.
**
**    Stephen Joe, Frances Kuo
**    Remark on Algorithm 659:
**    Implementing Sobol's Quasirandom Sequence Generator,
**    ACM Transactions on Mathematical Software,
**    Volume 29, Number 1, pages 49-57, March 2003.
**
**    Ilya Sobol,
**    USSR Computational Mathematics and Mathematical Physics,
**    Volume 16, pages 236-242, 1977.
**
**    Ilya Sobol, YL Levitan,
**    The Production of Points Uniformly Distributed in a Multidimensional
**    Cube (in Russian),
**    Preprint IPM Akad. Nauk SSSR,
**    Number 40, Moscow 1976.
**
**  Parameters:
**
**    Input, int DIM_NUM, the number of spatial dimensions.
**    DIM_NUM must satisfy 1 <= DIM_NUM <= 1111.
**
**    Input/output, long long int *SEED, the "seed" for the sequence.
**    This is essentially the index in the sequence of the quasirandom
**    value to be generated.  On output, SEED has been set to the
**    appropriate next value, usually simply SEED+1.
**    If SEED is less than 0 on input, it is treated as though it were 0.
**    An input value of 0 requests the first (0-th) element of the sequence.
**
**    Output, double QUASI[DIM_NUM], the next quasirandom vector.
*/
{
  static T1 atmost;
  static int dim_num_save = 0;
  int LOG_MAX = sizeof(T1)*8-2;
  bool includ[LOG_MAX];
  static bool initialized = false;
  static T1 lastq[DIM_MAX];
  static T1 maxcol;
  T1 l = 0;
  static T1 poly[DIM_MAX] =
    {
      1,    3,    7,   11,   13,   19,   25,   37,   59,   47,
      61,   55,   41,   67,   97,   91,  109,  103,  115,  131,
      193,  137,  145,  143,  241,  157,  185,  167,  229,  171,
      213,  191,  253,  203,  211,  239,  247,  285,  369,  299,
      301,  333,  351,  355,  357,  361,  391,  397,  425,  451,
      463,  487,  501,  529,  539,  545,  557,  563,  601,  607,
      617,  623,  631,  637,  647,  661,  675,  677,  687,  695,
      701,  719,  721,  731,  757,  761,  787,  789,  799,  803,
      817,  827,  847,  859,  865,  875,  877,  883,  895,  901,
      911,  949,  953,  967,  971,  973,  981,  985,  995, 1001,
      1019, 1033, 1051, 1063, 1069, 1125, 1135, 1153, 1163, 1221,
      1239, 1255, 1267, 1279, 1293, 1305, 1315, 1329, 1341, 1347,
      1367, 1387, 1413, 1423, 1431, 1441, 1479, 1509, 1527, 1531,
      1555, 1557, 1573, 1591, 1603, 1615, 1627, 1657, 1663, 1673,
      1717, 1729, 1747, 1759, 1789, 1815, 1821, 1825, 1849, 1863,
      1869, 1877, 1881, 1891, 1917, 1933, 1939, 1969, 2011, 2035,
      2041, 2053, 2071, 2091, 2093, 2119, 2147, 2149, 2161, 2171,
      2189, 2197, 2207, 2217, 2225, 2255, 2257, 2273, 2279, 2283,
      2293, 2317, 2323, 2341, 2345, 2363, 2365, 2373, 2377, 2385,
      2395, 2419, 2421, 2431, 2435, 2447, 2475, 2477, 2489, 2503,
      2521, 2533, 2551, 2561, 2567, 2579, 2581, 2601, 2633, 2657,
      2669, 2681, 2687, 2693, 2705, 2717, 2727, 2731, 2739, 2741,
      2773, 2783, 2793, 2799, 2801, 2811, 2819, 2825, 2833, 2867,
      2879, 2881, 2891, 2905, 2911, 2917, 2927, 2941, 2951, 2955,
      2963, 2965, 2991, 2999, 3005, 3017, 3035, 3037, 3047, 3053,
      3083, 3085, 3097, 3103, 3159, 3169, 3179, 3187, 3205, 3209,
      3223, 3227, 3229, 3251, 3263, 3271, 3277, 3283, 3285, 3299,
      3305, 3319, 3331, 3343, 3357, 3367, 3373, 3393, 3399, 3413,
      3417, 3427, 3439, 3441, 3475, 3487, 3497, 3515, 3517, 3529,
      3543, 3547, 3553, 3559, 3573, 3589, 3613, 3617, 3623, 3627,
      3635, 3641, 3655, 3659, 3669, 3679, 3697, 3707, 3709, 3713,
      3731, 3743, 3747, 3771, 3791, 3805, 3827, 3833, 3851, 3865,
      3889, 3895, 3933, 3947, 3949, 3957, 3971, 3985, 3991, 3995,
      4007, 4013, 4021, 4045, 4051, 4069, 4073, 4179, 4201, 4219,
      4221, 4249, 4305, 4331, 4359, 4383, 4387, 4411, 4431, 4439,
      4449, 4459, 4485, 4531, 4569, 4575, 4621, 4663, 4669, 4711,
      4723, 4735, 4793, 4801, 4811, 4879, 4893, 4897, 4921, 4927,
      4941, 4977, 5017, 5027, 5033, 5127, 5169, 5175, 5199, 5213,
      5223, 5237, 5287, 5293, 5331, 5391, 5405, 5453, 5523, 5573,
      5591, 5597, 5611, 5641, 5703, 5717, 5721, 5797, 5821, 5909,
      5913, 5955, 5957, 6005, 6025, 6061, 6067, 6079, 6081, 6231,
      6237, 6289, 6295, 6329, 6383, 6427, 6453, 6465, 6501, 6523,
      6539, 6577, 6589, 6601, 6607, 6631, 6683, 6699, 6707, 6761,
      6795, 6865, 6881, 6901, 6923, 6931, 6943, 6999, 7057, 7079,
      7103, 7105, 7123, 7173, 7185, 7191, 7207, 7245, 7303, 7327,
      7333, 7355, 7365, 7369, 7375, 7411, 7431, 7459, 7491, 7505,
      7515, 7541, 7557, 7561, 7701, 7705, 7727, 7749, 7761, 7783,
      7795, 7823, 7907, 7953, 7963, 7975, 8049, 8089, 8123, 8125,
      8137, 8219, 8231, 8245, 8275, 8293, 8303, 8331, 8333, 8351,
      8357, 8367, 8379, 8381, 8387, 8393, 8417, 8435, 8461, 8469,
      8489, 8495, 8507, 8515, 8551, 8555, 8569, 8585, 8599, 8605,
      8639, 8641, 8647, 8653, 8671, 8675, 8689, 8699, 8729, 8741,
      8759, 8765, 8771, 8795, 8797, 8825, 8831, 8841, 8855, 8859,
      8883, 8895, 8909, 8943, 8951, 8955, 8965, 8999, 9003, 9031,
      9045, 9049, 9071, 9073, 9085, 9095, 9101, 9109, 9123, 9129,
      9137, 9143, 9147, 9185, 9197, 9209, 9227, 9235, 9247, 9253,
      9257, 9277, 9297, 9303, 9313, 9325, 9343, 9347, 9371, 9373,
      9397, 9407, 9409, 9415, 9419, 9443, 9481, 9495, 9501, 9505,
      9517, 9529, 9555, 9557, 9571, 9585, 9591, 9607, 9611, 9621,
      9625, 9631, 9647, 9661, 9669, 9679, 9687, 9707, 9731, 9733,
      9745, 9773, 9791, 9803, 9811, 9817, 9833, 9847, 9851, 9863,
      9875, 9881, 9905, 9911, 9917, 9923, 9963, 9973, 10003, 10025,
      10043, 10063, 10071, 10077, 10091, 10099, 10105, 10115, 10129, 10145,
      10169, 10183, 10187, 10207, 10223, 10225, 10247, 10265, 10271, 10275,
      10289, 10299, 10301, 10309, 10343, 10357, 10373, 10411, 10413, 10431,
      10445, 10453, 10463, 10467, 10473, 10491, 10505, 10511, 10513, 10523,
      10539, 10549, 10559, 10561, 10571, 10581, 10615, 10621, 10625, 10643,
      10655, 10671, 10679, 10685, 10691, 10711, 10739, 10741, 10755, 10767,
      10781, 10785, 10803, 10805, 10829, 10857, 10863, 10865, 10875, 10877,
      10917, 10921, 10929, 10949, 10967, 10971, 10987, 10995, 11009, 11029,
      11043, 11045, 11055, 11063, 11075, 11081, 11117, 11135, 11141, 11159,
      11163, 11181, 11187, 11225, 11237, 11261, 11279, 11297, 11307, 11309,
      11327, 11329, 11341, 11377, 11403, 11405, 11413, 11427, 11439, 11453,
      11461, 11473, 11479, 11489, 11495, 11499, 11533, 11545, 11561, 11567,
      11575, 11579, 11589, 11611, 11623, 11637, 11657, 11663, 11687, 11691,
      11701, 11747, 11761, 11773, 11783, 11795, 11797, 11817, 11849, 11855,
      11867, 11869, 11873, 11883, 11919, 11921, 11927, 11933, 11947, 11955,
      11961, 11999, 12027, 12029, 12037, 12041, 12049, 12055, 12095, 12097,
      12107, 12109, 12121, 12127, 12133, 12137, 12181, 12197, 12207, 12209,
      12239, 12253, 12263, 12269, 12277, 12287, 12295, 12309, 12313, 12335,
      12361, 12367, 12391, 12409, 12415, 12433, 12449, 12469, 12479, 12481,
      12499, 12505, 12517, 12527, 12549, 12559, 12597, 12615, 12621, 12639,
      12643, 12657, 12667, 12707, 12713, 12727, 12741, 12745, 12763, 12769,
      12779, 12781, 12787, 12799, 12809, 12815, 12829, 12839, 12857, 12875,
      12883, 12889, 12901, 12929, 12947, 12953, 12959, 12969, 12983, 12987,
      12995, 13015, 13019, 13031, 13063, 13077, 13103, 13137, 13149, 13173,
      13207, 13211, 13227, 13241, 13249, 13255, 13269, 13283, 13285, 13303,
      13307, 13321, 13339, 13351, 13377, 13389, 13407, 13417, 13431, 13435,
      13447, 13459, 13465, 13477, 13501, 13513, 13531, 13543, 13561, 13581,
      13599, 13605, 13617, 13623, 13637, 13647, 13661, 13677, 13683, 13695,
      13725, 13729, 13753, 13773, 13781, 13785, 13795, 13801, 13807, 13825,
      13835, 13855, 13861, 13871, 13883, 13897, 13905, 13915, 13939, 13941,
      13969, 13979, 13981, 13997, 14027, 14035, 14037, 14051, 14063, 14085,
      14095, 14107, 14113, 14125, 14137, 14145, 14151, 14163, 14193, 14199,
      14219, 14229, 14233, 14243, 14277, 14287, 14289, 14295, 14301, 14305,
      14323, 14339, 14341, 14359, 14365, 14375, 14387, 14411, 14425, 14441,
      14449, 14499, 14513, 14523, 14537, 14543, 14561, 14579, 14585, 14593,
      14599, 14603, 14611, 14641, 14671, 14695, 14701, 14723, 14725, 14743,
      14753, 14759, 14765, 14795, 14797, 14803, 14831, 14839, 14845, 14855,
      14889, 14895, 14909, 14929, 14941, 14945, 14951, 14963, 14965, 14985,
      15033, 15039, 15053, 15059, 15061, 15071, 15077, 15081, 15099, 15121,
      15147, 15149, 15157, 15167, 15187, 15193, 15203, 15205, 15215, 15217,
      15223, 15243, 15257, 15269, 15273, 15287, 15291, 15313, 15335, 15347,
      15359, 15373, 15379, 15381, 15391, 15395, 15397, 15419, 15439, 15453,
      15469, 15491, 15503, 15517, 15527, 15531, 15545, 15559, 15593, 15611,
      15613, 15619, 15639, 15643, 15649, 15661, 15667, 15669, 15681, 15693,
      15717, 15721, 15741, 15745, 15765, 15793, 15799, 15811, 15825, 15835,
      15847, 15851, 15865, 15877, 15881, 15887, 15899, 15915, 15935, 15937,
      15955, 15973, 15977, 16011, 16035, 16061, 16069, 16087, 16093, 16097,
      16121, 16141, 16153, 16159, 16165, 16183, 16189, 16195, 16197, 16201,
      16209, 16215, 16225, 16259, 16265, 16273, 16299, 16309, 16355, 16375,
      16381
    };
  static T2 recipd;
  static T1 seed_save = -1;
  static T1 **v;
  if (!initialized || dim_num != dim_num_save)
    {
      v = new T1 *[DIM_MAX];
      for (int i = 0; i < DIM_MAX; i++)
        v[i] = new T1[LOG_MAX];
      initialized = true;
      initialize_v_array(DIM_MAX, LOG_MAX, v);
      /*
      **  Check parameters.
      */
      if (dim_num < 1 || DIM_MAX < dim_num)
        {
          cout << "\n";
          cout << "NEXT_SOBOL - Fatal error!\n";
          cout << "  The spatial dimension DIM_NUM should satisfy:\n";
          cout << "    1 <= DIM_NUM <= " << DIM_MAX << "\n";
          cout << "  But this input value is DIM_NUM = " << dim_num << "\n";
          exit(1);
        }
      dim_num_save = dim_num;
      /*
      **  Set ATMOST = 2^LOG_MAX - 1.
      */
      atmost = (T1) 0;
      for (int i = 1; i <= LOG_MAX; i++)
        atmost = 2 * atmost + 1;
      /*
      **  Find the highest 1 bit in ATMOST (should be LOG_MAX).
      */
      maxcol = bit_hi1(atmost);
      /*
      **  Initialize row 1 of V.
      */
      for (T1 j = 0; j < maxcol; j++)
        {
          v[0][j] = (T1) 1;
        }
      /*
      **  Initialize the remaining rows of V.
      */
      for (int i = 1; i < dim_num; i++)
        {
          /*
          **  The bit pattern of the integer POLY(I) gives the form
          **  of polynomial I.
          **
          **  Find the degree of polynomial I from binary encoding.
          */
          T1 j = poly[i];
          T1 m = 0;
          while (true)
            {
              j = j / 2;
              if (j <= 0)
                {
                  break;
                }
              m = m + 1;
            }
          /*
          **  We expand this bit pattern to separate components
          **  of the logical array INCLUD.
          */
          j = poly[i];
          for (T1 k = m-1; 0 <= k; k--)
            {
              T1 j2 = j / 2;
              includ[k] = (j != (2 * j2));
              j = j2;
            }
          /*
          **  Calculate the remaining elements of row I as explained
          **  in Bratley and Fox, section 2.
          **
          **  Some tricky indexing here.  Did I change it correctly?
          */
          for (j = m; j < maxcol; j++)
            {
              T1 newv = v[i][j-m];
              l = 1;
              for (T1 k = 0; k < m; k++)
                {
                  l = 2 * l;
                  if (includ[k])
                    {
                      newv = (newv ^ (l * v[i][j-k-1]));
                    }
                }
              v[i][j] = newv;
            }
        }
      /*
      **  Multiply columns of V by appropriate power of 2.
      */
      l = 1;
      for (T1 j = maxcol - 2; 0 <= j; j--)
        {
          l = 2 * l;
          for (int i = 0; i < dim_num; i++)
            {
              v[i][j] = v[i][j] * l;
            }
        }
      /*
      **  RECIPD is 1/(common denominator of the elements in V).
      */
      recipd = 1.0E+00 / ((T2) (2 * l));
    }
  if (*seed < 0)
    *seed = 0;

  if (*seed == 0)
    {
      l = 1;
      for (int i = 0; i < dim_num; i++)
        {
          lastq[i] = 0;
        }
    }
  else if (*seed == seed_save + 1)
    {
      l = bit_lo0(*seed);
    }
  else if (*seed <= seed_save)
    {
      seed_save = 0;
      l = 1;
      for (int i = 0; i < dim_num; i++)
        lastq[i] = 0;
      for (T1 seed_temp = seed_save; seed_temp <= (*seed)-1; seed_temp++)
        {
          l = bit_lo0(seed_temp);
          for (int i = 0; i < dim_num; i++)
            {
              lastq[i] = (lastq[i] ^ v[i][l-1]);
            }
        }
      l = bit_lo0(*seed);
    }
  else if (seed_save+1 < *seed)
    {
      for (T1 seed_temp = seed_save+1; seed_temp <= (*seed)-1; seed_temp++)
        {
          l = bit_lo0(seed_temp);
          for (int i = 0; i < dim_num; i++)
            {
              lastq[i] = (lastq[i] ^ v[i][l-1]);
            }
        }
      l = bit_lo0(*seed);
    }
  /*
  **  Check that the user is not calling too many times!
  */
  if (maxcol < l)
    {
      cout << "\n";
      cout << "NEXT_SOBOL - Fatal error!\n";
      cout << "  The value of SEED seems to be too large!\n";
      cout << "  SEED =   " << *seed  << "\n";
      cout << "  MAXCOL = " << maxcol << "\n";
      cout << "  L =      " << l << "\n";
      exit(2);
    }
  /*
  **  Calculate the new components of QUASI.
  **  The caret indicates the bitwise exclusive OR.
  */
  for (int i = 0; i < dim_num; i++)
    {
      quasi[i] = ((T2) lastq[i]) * recipd;
      lastq[i] = (lastq[i]^v[i][l-1]);
    }
  seed_save = *seed;
  *seed = *seed + 1;
  return;
}

template<typename T1, typename T2>
T1
sobol_block(int dimension, int block_size, T1 seed, T2 *block)
{
  for (int iter = 0; iter < block_size; iter++)
    {
      next_sobol(dimension, &seed, &block[iter*dimension]);
    }
  return seed;
}

template<typename T>
void
expand_unit_hypercube(int dimension, int block_size, T *block, T *lower_bound, T *upper_bound)
{
  T *hypercube_length = new T[dimension];
  for (int dim = 0; dim < dimension; dim++)
    {
      hypercube_length[dim] = upper_bound[dim]-lower_bound[dim];
    }
  int base = 0;
  for (int sim = 0; sim < block_size; sim++)
    {
      for (int dim = 0; dim < dimension; dim++)
        {
          block[base+dim] = lower_bound[dim] + hypercube_length[dim]*block[base+dim];
        }
      base += dimension;
    }
  delete[] hypercube_length;
}

#undef DIM_MAX