File: csminitworksuntiil0205.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (214 lines) | stat: -rw-r--r-- 6,801 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
function [fhat,xhat,fcount,retcode] = csminit(fcn,x0,f0,g0,badg,H0,varargin)
% [fhat,xhat,fcount,retcode] = csminit(fcn,x0,f0,g0,badg,H0,...
%                                       P1,P2,P3,P4,P5,P6,P7,P8)
% retcodes: 0, normal step.  5, largest step still improves too fast.
% 4,2 back and forth adjustment of stepsize didn't finish.  3, smallest
% stepsize still improves too slow.  6, no improvement found.  1, zero
% gradient.
%---------------------
% Modified 7/22/96 to omit variable-length P list, for efficiency and compilation.
% Places where the number of P's need to be altered or the code could be returned to
% its old form are marked with ARGLIST comments.
%
% Fixed 7/17/93 to use inverse-hessian instead of hessian itself in bfgs
% update.
%
% Fixed 7/19/93 to flip eigenvalues of H to get better performance when
% it's not psd.
% NOTE:  The display on screen can be turned off by seeting dispIndx=0 in this
%         function.  This option is used for the loop operation.  T. Zha, 2 May 2000

%
% Copyright (C) 1997-2012 Christopher A. Sims
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%

dispIndx = 0;   % 1: turn on all the diplays on the screen; 0: turn off (Added by T. Zha)

%
%tailstr = ')';
%for i=nargin-6:-1:1
%   tailstr=[ ',P' num2str(i)  tailstr];
%end

%ANGLE = .01;  % when output of this variable becomes negative, we have wrong analytical graident
ANGLE = .005;  % works for identified VARs and OLS
%THETA = .1;   % works for OLS or other nonlinear functions
THETA = .3; %(0<THETA<.5) THETA near .5 makes long line searches, possibly fewer iterations.
          % workds for identified VARs
FCHANGE = 1000;
MINLAMB = 1e-9;
% fixed 7/15/94
% MINDX = .0001;
% MINDX = 1e-6;
MINDFAC = .01;
fcount=0;
lambda=1;
xhat=x0;
f=f0;
fhat=f0;
g = g0;
gnorm = norm(g);
%
if (gnorm < 1.e-12) & ~badg % put ~badg 8/4/94
   retcode =1;
   dxnorm=0;
   % gradient convergence
else
   % with badg true, we don't try to match rate of improvement to directional
   % derivative.  We're satisfied just to get some improvement in f.
   %
   %if(badg)
   %   dx = -g*FCHANGE/(gnorm*gnorm);
   %  dxnorm = norm(dx);
   %  if dxnorm > 1e12
   %     disp('Bad, small gradient problem.')
   %     dx = dx*FCHANGE/dxnorm;
   %   end
   %else
   % Gauss-Newton step;
   %---------- Start of 7/19/93 mod ---------------
   %[v d] = eig(H0);
   %toc
   %d=max(1e-10,abs(diag(d)));
   %d=abs(diag(d));
   %dx = -(v.*(ones(size(v,1),1)*d'))*(v'*g);
%      toc
   dx = -H0*g;
%      toc
   dxnorm = norm(dx);
   if dxnorm > 1e12
      if dispIndx, disp('Near-singular H problem.'), end
      dx = dx*FCHANGE/dxnorm;
   end
   dfhat = dx'*g0;
   %end
   %
   %
   if ~badg
      % test for alignment of dx with gradient and fix if necessary
      a = -dfhat/(gnorm*dxnorm);
      if a<ANGLE
         dx = dx - (ANGLE*dxnorm/gnorm+dfhat/(gnorm*gnorm))*g;
         dfhat = dx'*g;
         dxnorm = norm(dx);
         if dispIndx, disp(sprintf('Correct for low angle: %g',a)), end
      end
   end
   if dispIndx, disp(sprintf('Predicted improvement: %18.9f',-dfhat/2)), end
   %
   % Have OK dx, now adjust length of step (lambda) until min and
   % max improvement rate criteria are met.
   done=0;
   factor=3;
   shrink=1;
   lambdaMin=0;
   lambdaMax=inf;
   lambdaPeak=0;
   fPeak=f0;
   lambdahat=0;
   while ~done
      if size(x0,2)>1
         dxtest=x0+dx'*lambda;
      else
         dxtest=x0+dx*lambda;
      end
      % home
      f = eval([fcn '(dxtest,varargin{:})']);
      %ARGLIST
      %f = feval(fcn,dxtest,P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13);
      % f = feval(fcn,x0+dx*lambda,P1,P2,P3,P4,P5,P6,P7,P8);
      if dispIndx, disp(sprintf('lambda = %10.5g; f = %20.7f',lambda,f )), end
      %debug
      %disp(sprintf('Improvement too great? f0-f: %g, criterion: %g',f0-f,-(1-THETA)*dfhat*lambda))
      if f<fhat
         fhat=f;
         xhat=dxtest;
         lambdahat = lambda;
      end
      fcount=fcount+1;
      shrinkSignal = (~badg & (f0-f < max([-THETA*dfhat*lambda 0]))) | (badg & (f0-f) < 0) ;
      growSignal = ~badg & ( (lambda > 0)  &  (f0-f > -(1-THETA)*dfhat*lambda) );
      if  shrinkSignal  &   ( (lambda>lambdaPeak) | (lambda<0) )
         if (lambda>0) & ((~shrink) | (lambda/factor <= lambdaPeak))
            shrink=1;
            factor=factor^.6;
            while lambda/factor <= lambdaPeak
               factor=factor^.6;
            end
            %if (abs(lambda)*(factor-1)*dxnorm < MINDX) | (abs(lambda)*(factor-1) < MINLAMB)
            if abs(factor-1) < MINDFAC
               if abs(lambda)<4
                  retcode = 2;
               else
                  retcode=7;
               end
               done=1;
            end
         end
         if (lambda<lambdaMax) & (lambda>lambdaPeak)
            lambdaMax=lambda;
         end
         lambda=lambda/factor;
         if abs(lambda) < MINLAMB
            if (lambda > 0) & (f0 <= fhat)
               % try going against gradient, which may be inaccurate
               lambda = -lambda*factor^6
            else
               if lambda < 0
                  retcode = 6;
               else
                  retcode = 3;
               end
               done = 1;
            end
         end
      elseif  (growSignal & lambda>0) |  (shrinkSignal & ((lambda <= lambdaPeak) & (lambda>0)))
         if shrink
            shrink=0;
            factor = factor^.6;
            %if ( abs(lambda)*(factor-1)*dxnorm< MINDX ) | ( abs(lambda)*(factor-1)< MINLAMB)
            if abs(factor-1) < MINDFAC
               if abs(lambda)<4
                  retcode = 4;
               else
                  retcode=7;
               end
               done=1;
            end
         end
         if ( f<fPeak ) & (lambda>0)
            fPeak=f;
            lambdaPeak=lambda;
            if lambdaMax<=lambdaPeak
               lambdaMax=lambdaPeak*factor*factor;
            end
         end
         lambda=lambda*factor;
         if abs(lambda) > 1e20;
            retcode = 5;
            done =1;
         end
      else
         done=1;
         if factor < 1.2
            retcode=7;
         else
            retcode=0;
         end
      end
   end
end
if dispIndx, disp(sprintf('Norm of dx %10.5g', dxnorm)), end