File: csminwel.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (312 lines) | stat: -rw-r--r-- 11,703 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
function [fh,xh,gh,H,itct,fcount,retcodeh] = csminwel(fcn,x0,H0,grad,crit,nit,varargin)
%[fhat,xhat,ghat,Hhat,itct,fcount,retcodehat] = csminwel(fcn,x0,H0,grad,crit,nit,varargin)
% fcn:   string naming the objective function to be minimized
% x0:    initial value of the parameter vector
% H0:    initial value for the inverse Hessian.  Must be positive definite.
% grad:  Either a string naming a function that calculates the gradient, or the null matrix.
%        If it's null, the program calculates a numerical gradient.  In this case fcn must
%        be written so that it can take a matrix argument and produce a row vector of values.
% crit:  Convergence criterion.  Iteration will cease when it proves impossible to improve the
%        function value by more than crit.
% nit:   Maximum number of iterations.
% varargin: A list of optional length of additional parameters that get handed off to fcn each
%        time it is called.
%        Note that if the program ends abnormally, it is possible to retrieve the current x,
%        f, and H from the files g1.mat and H.mat that are written at each iteration and at each
%        hessian update, respectively.  (When the routine hits certain kinds of difficulty, it
%        write g2.mat and g3.mat as well.  If all were written at about the same time, any of them
%        may be a decent starting point.  One can also start from the one with best function value.)
% NOTE:  The display on screen can be turned off by seeting dispIndx=0 in this
%         function.  This option is used for the loop operation.  T. Zha, 2 May 2000
% NOTE:  You may want to change stps to 1.0e-02 or 1.0e-03 to get a better convergence.  August, 2006
%
% Copyright (C) 1997-2012 Christopher A. Sims and Tao Zha
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%

Verbose = 1;  % 1: turn on all the diplays on the screen; 0: turn off (Added by T. Zha)
dispIndx = 1;   % 1: turn on all the diplays on the screen; 0: turn off (Added by T. Zha)

[nx,no]=size(x0);
nx=max(nx,no);
NumGrad= ( ~isstr(grad) | length(grad)==0);
done=0;
itct=0;
fcount=0;
snit=100;
%tailstr = ')';
%stailstr = [];
% Lines below make the number of Pi's optional.  This is inefficient, though, and precludes
% use of the matlab compiler.  Without them, we use feval and the number of Pi's must be
% changed with the editor for each application.  Places where this is required are marked
% with ARGLIST comments
%for i=nargin-6:-1:1
%   tailstr=[ ',P' num2str(i)  tailstr];
%   stailstr=[' P' num2str(i) stailstr];
%end
if ischar(fcn)
	f0 = eval([fcn '(x0,varargin{:})']);
else
	f0 = fcn(x0,varargin{:});
end
%ARGLIST
%f0 = feval(fcn,x0,P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13);
% disp('first fcn in csminwel.m ----------------') % Jinill on 9/5/95
if f0 > 1e50, disp('Bad initial parameter.'), return, end
if NumGrad
   if length(grad)==0
      [g badg] = numgradcd(fcn,x0, varargin{:});
      %ARGLIST
      %[g badg] = numgradcd(fcn,x0,P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13);
   else
      badg=any(find(grad==0));
      g=grad;
   end
   %numgradcd(fcn,x0,P1,P2,P3,P4);
else
   [g badg] = eval([grad '(x0,varargin{:})']);
   %ARGLIST
   %[g badg] = feval(grad,x0,P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13);
end
retcode3=101;
x=x0;
f=f0;
H=H0;
cliff=0;
while ~done
   g1=[]; g2=[]; g3=[];
   %addition fj. 7/6/94 for control
   if dispIndx
      disp('-----------------')
      disp('-----------------')
      %disp('f and x at the beginning of new iteration')
      disp(sprintf('f at the beginning of new iteration, %20.10f',f))
      %-----------Comment out this line if the x vector is long----------------
      disp([sprintf('x = ') sprintf('%15.8g%15.8g%15.8g%15.8g%15.8g\n',x)]);
   end
   %-------------------------
   itct=itct+1;
   [f1 x1 fc retcode1] = csminit(fcn,x,f,g,badg,H,varargin{:});
   %ARGLIST
   %[f1 x1 fc retcode1] = csminit(fcn,x,f,g,badg,H,P1,P2,P3,P4,P5,P6,P7,...
   %           P8,P9,P10,P11,P12,P13);
   % itct=itct+1;
   fcount = fcount+fc;
   % erased on 8/4/94
   % if (retcode == 1) | (abs(f1-f) < crit)
   %    done=1;
   % end
   % if itct > nit
   %    done = 1;
   %    retcode = -retcode;
   % end
   if retcode1 ~= 1
      if retcode1==2 | retcode1==4
         wall1=1; badg1=1;
      else
         if NumGrad
            [g1 badg1] = numgradcd(fcn, x1,varargin{:});
            %ARGLIST
            %[g1 badg1] = numgradcd(fcn, x1,P1,P2,P3,P4,P5,P6,P7,P8,P9,...
            %                P10,P11,P12,P13);
         else
            [g1 badg1] = eval([grad '(x1,varargin{:})']);
            %ARGLIST
            %[g1 badg1] = feval(grad, x1,P1,P2,P3,P4,P5,P6,P7,P8,P9,...
            %                P10,P11,P12,P13);
         end
         wall1=badg1;
         % g1
         save g1 g1 x1 f1 varargin;
         %ARGLIST
         %save g1 g1 x1 f1 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13;
      end
      if wall1 % & (~done) by Jinill
         % Bad gradient or back and forth on step length.  Possibly at
         % cliff edge.  Try perturbing search direction.
         %
         %fcliff=fh;xcliff=xh;
         if dispIndx
            disp(' ')
            disp('************************* Random search. *****************************************')
            disp('************************* Random search. *****************************************')
            disp(' ')
            pause(1.0)
         end
         Hcliff=H+diag(diag(H).*rand(nx,1));
         if dispIndx, disp('Cliff.  Perturbing search direction.'), end
         [f2 x2 fc retcode2] = csminit(fcn,x,f,g,badg,Hcliff,varargin{:});
         %ARGLIST
         %[f2 x2 fc retcode2] = csminit(fcn,x,f,g,badg,Hcliff,P1,P2,P3,P4,...
         %     P5,P6,P7,P8,P9,P10,P11,P12,P13);
         fcount = fcount+fc; % put by Jinill
         if  f2 < f
            if retcode2==2 | retcode2==4
                  wall2=1; badg2=1;
            else
               if NumGrad
                  [g2 badg2] = numgradcd(fcn, x2,varargin{:});
                  %ARGLIST
                  %[g2 badg2] = numgradcd(fcn, x2,P1,P2,P3,P4,P5,P6,P7,P8,...
                  %      P9,P10,P11,P12,P13);
               else
                  [g2 badg2] = eval([grad '(x2,varargin{:})']);
                  %ARGLIST
                  %[g2 badg2] = feval(grad,x2,P1,P2,P3,P4,P5,P6,P7,P8,...
                  %      P9,P10,P11,P12,P13);
               end
               wall2=badg2;
               % g2
               if dispIndx, badg2, end
               save g2 g2 x2 f2 varargin
               %ARGLIST
               %save g2 g2 x2 f2 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13;
            end
            if wall2
               if dispIndx, disp('Cliff again.  Try traversing'), end
               if norm(x2-x1) < 1e-13
                  f3=f; x3=x; badg3=1;retcode3=101;
               else
                  gcliff=((f2-f1)/((norm(x2-x1))^2))*(x2-x1);
                  if(size(x0,2)>1), gcliff=gcliff', end
                  [f3 x3 fc retcode3] = csminit(fcn,x,f,gcliff,0,eye(nx),varargin{:});
                  %ARGLIST
                  %[f3 x3 fc retcode3] = csminit(fcn,x,f,gcliff,0,eye(nx),P1,P2,P3,...
                  %         P4,P5,P6,P7,P8,...
                  %      P9,P10,P11,P12,P13);
                  fcount = fcount+fc; % put by Jinill
                  if retcode3==2 | retcode3==4
                     wall3=1; badg3=1;
                  else
                     if NumGrad
                        [g3 badg3] = numgradcd(fcn, x3,varargin{:});
                        %ARGLIST
                        %[g3 badg3] = numgradcd(fcn, x3,P1,P2,P3,P4,P5,P6,P7,P8,...
                        %                        P9,P10,P11,P12,P13);
                     else
                        [g3 badg3] = eval([grad '(x3,varargin{:})']);
                        %ARGLIST
                        %[g3 badg3] = feval(grad,x3,P1,P2,P3,P4,P5,P6,P7,P8,...
                        %                         P9,P10,P11,P12,P13);
                     end
                     wall3=badg3;
                     % g3
                     if dispIndx, badg3, end
                     save g3 g3 x3 f3 varargin;
                     %ARGLIST
                     %save g3 g3 x3 f3 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13;
                  end
               end
            else
               f3=f; x3=x; badg3=1; retcode3=101;
            end
         else
            f3=f; x3=x; badg3=1;retcode3=101;
         end
      else
         % normal iteration, no walls, or else we're finished here.
         f2=f; f3=f; badg2=1; badg3=1; retcode2=101; retcode3=101;
      end
   else
      f1=f; f2=f; f3=f; retcode2=retcode1; retcode3=retcode1;
   end
   %how to pick gh and xh
   if f3<f & badg3==0
      if dispIndx, ih=3, end
      fh=f3;xh=x3;gh=g3;badgh=badg3;retcodeh=retcode3;
   elseif f2<f & badg2==0
      if dispIndx, ih=2, end
      fh=f2;xh=x2;gh=g2;badgh=badg2;retcodeh=retcode2;
   elseif f1<f & badg1==0
      if dispIndx, ih=1, end
      fh=f1;xh=x1;gh=g1;badgh=badg1;retcodeh=retcode1;
   else
      [fh,ih] = min([f1,f2,f3]);
      if dispIndx, disp(sprintf('ih = %d',ih)), end
      %eval(['xh=x' num2str(ih) ';'])
      switch ih
         case 1
            xh=x1;
         case 2
            xh=x2;
         case 3
            xh=x3;
      end %case
      %eval(['gh=g' num2str(ih) ';'])
      %eval(['retcodeh=retcode' num2str(ih) ';'])
      retcodei=[retcode1,retcode2,retcode3];
      retcodeh=retcodei(ih);
      if exist('gh')
         nogh=isempty(gh);
      else
         nogh=1;
      end
      if nogh
         if NumGrad
            [gh badgh] = numgradcd(fcn, xh,varargin{:});  %Pointed out by Junior Maih.
            %[gh badgh] = feval('numgrad',fcn,xh,varargin{:});
         else
            [gh badgh] = numgradcd(fcn, xh,varargin{:});  %Pointed out by Junior Maih.
            %[gh badgh] = feval('grad', xh,varargin{:});
         end
      end
      badgh=1;
   end
   %end of picking
   %ih
   %fh
   %xh
   %gh
   %badgh
   stuck = (abs(fh-f) < crit);
   if (~badg)&(~badgh)&(~stuck)
      H = bfgsi(H,gh-g,xh-x);
   end
   if Verbose
      if dispIndx
         disp('----')
         disp(sprintf('Improvement on iteration %d = %18.9f',itct,f-fh))
      end
   end

   if itct > nit
      if dispIndx, disp('iteration count termination'), end
      done = 1;
   elseif stuck
      if dispIndx, disp('improvement < crit termination'), end
      done = 1;
   end
   rc=retcodeh;
   if rc == 1
      if dispIndx, disp('zero gradient'), end
   elseif rc == 6
      if dispIndx, disp('smallest step still improving too slow, reversed gradient'), end
   elseif rc == 5
      if dispIndx, disp('largest step still improving too fast'), end
   elseif (rc == 4) | (rc==2)
      if dispIndx, disp('back and forth on step length never finished'), end
   elseif rc == 3
      if dispIndx, disp('smallest step still improving too slow'), end
   elseif rc == 7
      if dispIndx, disp('warning: possible inaccuracy in H matrix'), end
   end

   f=fh;
   x=xh;
   g=gh;
   badg=badgh;
end
% what about making an m-file of 10 lines including numgrad.m
% since it appears three times in csminwel.m