File: quasi_mcarlo.cc

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (214 lines) | stat: -rw-r--r-- 5,519 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
/*
 * Copyright © 2005 Ondra Kamenik
 * Copyright © 2019 Dynare Team
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "quasi_mcarlo.hh"

#include <cmath>
#include <iostream>
#include <iomanip>
#include <array>

/* Here in the constructor, we have to calculate a maximum length of ‘coeff’
   array for a given ‘base’ and given maximum ‘maxn’. After allocation, we
   calculate the coefficients. */

RadicalInverse::RadicalInverse(int n, int b, int mxn)
  : num(n), base(b), maxn(mxn),
    coeff(static_cast<int>(floor(log(static_cast<double>(maxn))/log(static_cast<double>(b)))+2), 0)
{
  int nr = num;
  j = -1;
  do
    {
      j++;
      coeff[j] = nr % base;
      nr = nr / base;
    }
  while (nr > 0);
}

/* This evaluates the radical inverse. If there was no permutation, we have to
   calculate:

    c₀   c₁        cⱼ
    ── + ── + … + ────
     b   b²       bʲ⁺¹

   which is evaluated as:

    ⎛ ⎛⎛cⱼ 1   cⱼ₋₁⎞ 1   cⱼ₋₂⎞ ⎞ 1   c₀
    ⎢…⎢⎢──·─ + ────⎥·─ + ────⎥…⎥·─ + ──
    ⎝ ⎝⎝ b b     b ⎠ b     b ⎠ ⎠ b    b


   Now with permutation π, we have:

    ⎛ ⎛⎛π(cⱼ) 1   π(cⱼ₋₁)⎞ 1   π(cⱼ₋₂)⎞ ⎞ 1   π(c₀)
    ⎢…⎢⎢─────·─ + ───────⎥·─ + ───────⎥…⎥·─ + ─────
    ⎝ ⎝⎝  b   b       b  ⎠ b       b  ⎠ ⎠ b     b
*/

double
RadicalInverse::eval(const PermutationScheme &p) const
{
  double res = 0;
  for (int i = j; i >= 0; i--)
    {
      int cper = p.permute(i, base, coeff[i]);
      res = (cper + res)/base;
    }
  return res;
}

/* We just add 1 to the lowest coefficient and check for overflow with respect
   to the base. */
void
RadicalInverse::increase()
{
  // TODO: raise if num+1 > maxn
  num++;
  int i = 0;
  coeff[i]++;
  while (coeff[i] == base)
    {
      coeff[i] = 0;
      coeff[++i]++;
    }
  if (i > j)
    j = i;
}

/* Debug print. */
void
RadicalInverse::print() const
{
  std::cout << "n=" << num << " b=" << base << " c=";
  coeff.print();
}

/* Here we have the first 170 primes. This means that we are not able to
   integrate dimensions greater than 170. */

std::array<int, 170> HaltonSequence::primes =
  {
   2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
   31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
   73, 79, 83, 89, 97, 101, 103, 107, 109, 113,
   127, 131, 137, 139, 149, 151, 157, 163, 167, 173,
   179, 181, 191, 193, 197, 199, 211, 223, 227, 229,
   233, 239, 241, 251, 257, 263, 269, 271, 277, 281,
   283, 293, 307, 311, 313, 317, 331, 337, 347, 349,
   353, 359, 367, 373, 379, 383, 389, 397, 401, 409,
   419, 421, 431, 433, 439, 443, 449, 457, 461, 463,
   467, 479, 487, 491, 499, 503, 509, 521, 523, 541,
   547, 557, 563, 569, 571, 577, 587, 593, 599, 601,
   607, 613, 617, 619, 631, 641, 643, 647, 653, 659,
   661, 673, 677, 683, 691, 701, 709, 719, 727, 733,
   739, 743, 751, 757, 761, 769, 773, 787, 797, 809,
   811, 821, 823, 827, 829, 839, 853, 857, 859, 863,
   877, 881, 883, 887, 907, 911, 919, 929, 937, 941,
   947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013
  };

/* This takes first ‘dim’ primes and constructs ‘dim’ radical inverses and
   calls eval(). */

HaltonSequence::HaltonSequence(int n, int mxn, int dim, const PermutationScheme &p)
  : num(n), maxn(mxn), per(p), pt(dim)
{
  // TODO: raise if dim > num_primes
  // TODO: raise if n > mxn
  for (int i = 0; i < dim; i++)
    ri.emplace_back(num, primes[i], maxn);
  eval();
}

/* This calls RadicalInverse::increase() for all radical inverses and calls
   eval(). */

void
HaltonSequence::increase()
{
  for (auto &i : ri)
    i.increase();
  num++;
  if (num <= maxn)
    eval();
}

/* This sets point ‘pt’ to radical inverse evaluations in each dimension. */
void
HaltonSequence::eval()
{
  for (unsigned int i = 0; i < ri.size(); i++)
    pt[i] = ri[i].eval(per);
}

/* Debug print. */
void
HaltonSequence::print() const
{
  auto ff = std::cout.flags();
  for (const auto &i : ri)
    i.print();
  std::cout << "point=[ "
            << std::fixed << std::setprecision(6);
  for (unsigned int i = 0; i < ri.size(); i++)
    std::cout << std::setw(7) << pt[i] << ' ';
  std::cout << ']' << std::endl;
  std::cout.flags(ff);
}

qmcpit::qmcpit(const QMCSpecification &s, int n)
  : spec(s), halton{n, s.level(), s.dimen(), s.getPerScheme()},
    sig{s.dimen()}
{
}

bool
qmcpit::operator==(const qmcpit &qpit) const
{
  return &spec == &qpit.spec && halton.getNum() == qpit.halton.getNum();
}

qmcpit &
qmcpit::operator++()
{
  halton.increase();
  return *this;
}

double
qmcpit::weight() const
{
  return 1.0/spec.level();
}

int
WarnockPerScheme::permute(int i, int base, int c) const
{
  return (c+i) % base;
}

int
ReversePerScheme::permute(int i, int base, int c) const
{
  return (base-c) % base;
}