File: vector_function.cc

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (147 lines) | stat: -rw-r--r-- 4,016 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
/*
 * Copyright © 2005 Ondra Kamenik
 * Copyright © 2019 Dynare Team
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "vector_function.hh"

#include <dynlapack.h>

#include <cmath>
#include <algorithm>

/* Just an easy constructor of sequence of booleans defaulting to change
   everywhere. */

ParameterSignal::ParameterSignal(int n)
  : data(n, true)
{
}

/* This sets ‘false’ (no change) before a given parameter, and ‘true’ (change)
   after the given parameter (including). */

void
ParameterSignal::signalAfter(int l)
{
  for (size_t i = 0; i < std::min(static_cast<size_t>(l), data.size()); i++)
    data[i] = false;
  for (size_t i = l; i < data.size(); i++)
    data[i] = true;
}

/* This constructs a function set hardcopying also the first. */
VectorFunctionSet::VectorFunctionSet(const VectorFunction &f, int n)
  : funcs(n)
{
  for (int i = 0; i < n; i++)
    {
      func_copies.push_back(f.clone());
      funcs[i] = func_copies.back().get();
    }
}

/* This constructs a function set with shallow copy in the first and hard
   copies in others. */
VectorFunctionSet::VectorFunctionSet(VectorFunction &f, int n)
  : funcs(n)
{
  if (n > 0)
    funcs[0] = &f;
  for (int i = 1; i < n; i++)
    {
      func_copies.push_back(f.clone());
      funcs[i] = func_copies.back().get();
    }
}

/* Here we construct the object from the given function f and given
   variance-covariance matrix Σ=vcov. The matrix A is calculated as lower
   triangular and yields Σ=AAᵀ. */

GaussConverterFunction::GaussConverterFunction(VectorFunction &f, const GeneralMatrix &vcov)
  : VectorFunction(f), func(&f), A(vcov.nrows(), vcov.nrows()),
    multiplier(calcMultiplier())
{
  // TODO: raise if A.nrows() ≠ indim()
  calcCholeskyFactor(vcov);
}

GaussConverterFunction::GaussConverterFunction(std::unique_ptr<VectorFunction> f, const GeneralMatrix &vcov)
  : VectorFunction(*f), func_storage{move(f)}, func{func_storage.get()}, A(vcov.nrows(), vcov.nrows()),
    multiplier(calcMultiplier())
{
  // TODO: raise if A.nrows() ≠ indim()
  calcCholeskyFactor(vcov);
}

GaussConverterFunction::GaussConverterFunction(const GaussConverterFunction &f)
  : VectorFunction(f), func_storage{f.func->clone()}, func{func_storage.get()}, A(f.A),
    multiplier(f.multiplier)
{
}

/* Here we evaluate the function

    g(y) = 1/√(πⁿ) f(√2·Ay).

   Since the matrix A is lower triangular, the change signal for the function f
   will look like (0,…,0,1,…,1) where the first 1 is in the same position as
   the first change in the given signal ‘sig’ of the input y=point. */

void
GaussConverterFunction::eval(const Vector &point, const ParameterSignal &sig, Vector &out)
{
  ParameterSignal s(sig);
  int i = 0;
  while (i < indim() && !sig[i])
    i++;
  s.signalAfter(i);

  Vector x(indim());
  x.zeros();
  A.multaVec(x, point);
  x.mult(sqrt(2.0));

  func->eval(x, s, out);

  out.mult(multiplier);
}

/* This returns 1/√(πⁿ). */

double
GaussConverterFunction::calcMultiplier() const
{
  return sqrt(pow(M_PI, -1*indim()));
}

void
GaussConverterFunction::calcCholeskyFactor(const GeneralMatrix &vcov)
{
  A = vcov;

  lapack_int rows = A.nrows(), lda = A.getLD();
  for (int i = 0; i < rows; i++)
    for (int j = i+1; j < rows; j++)
      A.get(i, j) = 0.0;

  lapack_int info;
  dpotrf("L", &rows, A.base(), &lda, &info);
  // TODO: raise if info≠1
}