File: tests.cc

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (550 lines) | stat: -rw-r--r-- 15,712 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
/*
 * Copyright © 2005 Ondra Kamenik
 * Copyright © 2019 Dynare Team
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "GeneralMatrix.hh"
#include <dynlapack.h>
#include "SylvException.hh"

#include "rfs_tensor.hh"
#include "normal_moments.hh"

#include "vector_function.hh"
#include "quadrature.hh"
#include "smolyak.hh"
#include "product.hh"
#include "quasi_mcarlo.hh"

#include <iomanip>
#include <chrono>
#include <cmath>
#include <iostream>
#include <utility>
#include <array>
#include <memory>
#include <cstdlib>

/* Evaluates unfolded (Dx)ᵏ power, where x is a vector, D is a Cholesky factor
   (lower triangular) */
class MomentFunction : public VectorFunction
{
  GeneralMatrix D;
  int k;
public:
  MomentFunction(const GeneralMatrix &inD, int kk)
    : VectorFunction(inD.nrows(), UFSTensor::calcMaxOffset(inD.nrows(), kk)),
      D(inD), k(kk)
  {
  }
  MomentFunction(const MomentFunction &func) = default;

  std::unique_ptr<VectorFunction>
  clone() const override
  {
    return std::make_unique<MomentFunction>(*this);
  }
  void eval(const Vector &point, const ParameterSignal &sig, Vector &out) override;
};

void
MomentFunction::eval(const Vector &point, const ParameterSignal &sig, Vector &out)
{
  if (point.length() != indim() || out.length() != outdim())
    {
      std::cerr << "Wrong length of vectors in MomentFunction::eval" << std::endl;
      std::exit(EXIT_FAILURE);
    }
  Vector y(point);
  y.zeros();
  D.multaVec(y, point);
  URSingleTensor ypow(y, k);
  out.zeros();
  out.add(1.0, ypow.getData());
}

class TensorPower : public VectorFunction
{
  int k;
public:
  TensorPower(int nvar, int kk)
    : VectorFunction(nvar, UFSTensor::calcMaxOffset(nvar, kk)), k(kk)
  {
  }
  TensorPower(const TensorPower &func) = default;

  std::unique_ptr<VectorFunction>
  clone() const override
  {
    return std::make_unique<TensorPower>(*this);
  }
  void eval(const Vector &point, const ParameterSignal &sig, Vector &out) override;
};

void
TensorPower::eval(const Vector &point, const ParameterSignal &sig, Vector &out)
{
  if (point.length() != indim() || out.length() != outdim())
    {
      std::cerr << "Wrong length of vectors in TensorPower::eval" << std::endl;
      std::exit(EXIT_FAILURE);
    }
  URSingleTensor ypow(point, k);
  out.zeros();
  out.add(1.0, ypow.getData());
}

/* Evaluates (1+1/d)ᵈ(x₁·…·x_d)^(1/d), its integral over [0,1]ᵈ
   is 1.0, and its variation grows exponentially */
class Function1 : public VectorFunction
{
  int dim;
public:
  Function1(int d)
    : VectorFunction(d, 1), dim(d)
  {
  }
  Function1(const Function1 &f)
    : VectorFunction(f.indim(), f.outdim()), dim(f.dim)
  {
  }
  std::unique_ptr<VectorFunction>
  clone() const override
  {
    return std::make_unique<Function1>(*this);
  }
  void eval(const Vector &point, const ParameterSignal &sig, Vector &out) override;
};

void
Function1::eval(const Vector &point, const ParameterSignal &sig, Vector &out)
{
  if (point.length() != dim || out.length() != 1)
    {
      std::cerr << "Wrong length of vectors in Function1::eval" << std::endl;
      std::exit(EXIT_FAILURE);
    }
  double r = 1;
  for (int i = 0; i < dim; i++)
    r *= point[i];
  r = pow(r, 1.0/dim);
  r *= pow(1.0 + 1.0/dim, static_cast<double>(dim));
  out[0] = r;
}

// Evaluates Function1 but with transformation xᵢ=0.5(yᵢ+1)
// This makes the new function integrate over [−1,1]ᵈ to 1.0
class Function1Trans : public Function1
{
public:
  Function1Trans(int d)
    : Function1(d)
  {
  }
  Function1Trans(const Function1Trans &func) = default;

  std::unique_ptr<VectorFunction>
  clone() const override
  {
    return std::make_unique<Function1Trans>(*this);
  }
  void eval(const Vector &point, const ParameterSignal &sig, Vector &out) override;
};

void
Function1Trans::eval(const Vector &point, const ParameterSignal &sig, Vector &out)
{
  Vector p(point.length());
  for (int i = 0; i < p.length(); i++)
    p[i] = 0.5*(point[i]+1);
  Function1::eval(p, sig, out);
  out.mult(pow(0.5, indim()));
}

/* WallTimer class. Constructor saves the wall time, destructor cancels the
   current time from the saved, and prints the message with time information */
class WallTimer
{
  std::string mes;
  std::chrono::time_point<std::chrono::high_resolution_clock> start;
  bool new_line;
public:
  WallTimer(std::string m, bool nl = true)
    : mes{m}, start{std::chrono::high_resolution_clock::now()}, new_line{nl}
  {
  }
  ~WallTimer()
  {
    auto end = std::chrono::high_resolution_clock::now();
    std::chrono::duration<double> duration = end - start;
    std::cout << mes << std::setw(8) << std::setprecision(4) << duration.count();
    if (new_line)
      std::cout << std::endl;
  }
};

/****************************************************/
/*     declaration of TestRunnable class            */
/****************************************************/
class TestRunnable
{
public:
  const std::string name;
  int dim; // dimension of the solved problem
  int nvar; // number of variables of the solved problem
  TestRunnable(std::string name_arg, int d, int nv)
    : name{move(name_arg)}, dim(d), nvar(nv)
  {
  }
  virtual ~TestRunnable() = default;
  bool test() const;
  virtual bool run() const = 0;
protected:
  static bool smolyak_normal_moments(const GeneralMatrix &m, int imom, int level);
  static bool product_normal_moments(const GeneralMatrix &m, int imom, int level);
  static bool qmc_normal_moments(const GeneralMatrix &m, int imom, int level);
  static bool smolyak_product_cube(const VectorFunction &func, const Vector &res,
                                   double tol, int level);
  static bool qmc_cube(const VectorFunction &func, double res, double tol, int level);
};

bool
TestRunnable::test() const
{
  std::cout << "Running test <" << name << ">" << std::endl;
  bool passed;
  {
    WallTimer tim("Wall clock time ", false);
    passed = run();
  }
  if (passed)
    {
      std::cout << "............................ passed" << std::endl << std::endl;
      return passed;
    }
  else
    {
      std::cout << "............................ FAILED" << std::endl << std::endl;
      return passed;
    }
}

/****************************************************/
/*     definition of TestRunnable static methods    */
/****************************************************/
bool
TestRunnable::smolyak_normal_moments(const GeneralMatrix &m, int imom, int level)
{
  // First make m·mᵀ and then Cholesky factor
  GeneralMatrix msq(m * transpose(m));

  // Make vector function
  int dim = m.nrows();
  TensorPower tp(dim, imom);
  GaussConverterFunction func(tp, msq);

  // Smolyak quadrature
  Vector smol_out(UFSTensor::calcMaxOffset(dim, imom));
  {
    WallTimer tim("\tSmolyak quadrature time:         ");
    GaussHermite gs;
    SmolyakQuadrature quad(dim, level, gs);
    quad.integrate(func, level, sthread::detach_thread_group::max_parallel_threads, smol_out);
    std::cout << "\tNumber of Smolyak evaluations:    " << quad.numEvals(level) << std::endl;
  }

  // Check against theoretical moments
  UNormalMoments moments(imom, msq);
  smol_out.add(-1.0, moments.get(Symmetry{imom}).getData());
  std::cout << "\tError:                         " << std::setw(16) << std::setprecision(12) << smol_out.getMax() << std::endl;
  return smol_out.getMax() < 1.e-7;
}

bool
TestRunnable::product_normal_moments(const GeneralMatrix &m, int imom, int level)
{
  // First make m·mᵀ and then Cholesky factor
  GeneralMatrix msq(m * transpose(m));

  // Make vector function
  int dim = m.nrows();
  TensorPower tp(dim, imom);
  GaussConverterFunction func(tp, msq);

  // Product quadrature
  Vector prod_out(UFSTensor::calcMaxOffset(dim, imom));
  {
    WallTimer tim("\tProduct quadrature time:         ");
    GaussHermite gs;
    ProductQuadrature quad(dim, gs);
    quad.integrate(func, level, sthread::detach_thread_group::max_parallel_threads, prod_out);
    std::cout << "\tNumber of product evaluations:    " << quad.numEvals(level) << std::endl;
  }

  // Check against theoretical moments
  UNormalMoments moments(imom, msq);
  prod_out.add(-1.0, moments.get(Symmetry{imom}).getData());
  std::cout << "\tError:                         " << std::setw(16) << std::setprecision(12) << prod_out.getMax() << std::endl;
  return prod_out.getMax() < 1.e-7;
}

bool
TestRunnable::smolyak_product_cube(const VectorFunction &func, const Vector &res,
                                   double tol, int level)
{
  if (res.length() != func.outdim())
    {
      std::cerr << "Incompatible dimensions of check value and function." << std::endl;
      std::exit(EXIT_FAILURE);
    }

  GaussLegendre glq;
  Vector out(func.outdim());
  double smol_error;
  double prod_error;
  {
    WallTimer tim("\tSmolyak quadrature time:         ");
    SmolyakQuadrature quad(func.indim(), level, glq);
    quad.integrate(func, level, sthread::detach_thread_group::max_parallel_threads, out);
    out.add(-1.0, res);
    smol_error = out.getMax();
    std::cout << "\tNumber of Smolyak evaluations:    " << quad.numEvals(level) << std::endl;
    std::cout << "\tError:                            " << std::setw(16) << std::setprecision(12) << smol_error << std::endl;
  }
  {
    WallTimer tim("\tProduct quadrature time:         ");
    ProductQuadrature quad(func.indim(), glq);
    quad.integrate(func, level, sthread::detach_thread_group::max_parallel_threads, out);
    out.add(-1.0, res);
    prod_error = out.getMax();
    std::cout << "\tNumber of product evaluations:    " << quad.numEvals(level) << std::endl;
    std::cout << "\tError:                            " << std::setw(16) << std::setprecision(12) << prod_error << std::endl;
  }

  return smol_error < tol && prod_error < tol;
}

bool
TestRunnable::qmc_cube(const VectorFunction &func, double res, double tol, int level)
{
  Vector r(1);
  double error1;
  {
    WallTimer tim("\tQuasi-Monte Carlo (Warnock scrambling) time:  ");
    WarnockPerScheme wps;
    QMCarloCubeQuadrature qmc(func.indim(), level, wps);
    qmc.integrate(func, level, sthread::detach_thread_group::max_parallel_threads, r);
    error1 = std::max(res - r[0], r[0] - res);
    std::cout << "\tQuasi-Monte Carlo (Warnock scrambling) error: " << std::setw(16) << std::setprecision(12) << error1 << std::endl;
  }
  double error2;
  {
    WallTimer tim("\tQuasi-Monte Carlo (reverse scrambling) time:  ");
    ReversePerScheme rps;
    QMCarloCubeQuadrature qmc(func.indim(), level, rps);
    qmc.integrate(func, level, sthread::detach_thread_group::max_parallel_threads, r);
    error2 = std::max(res - r[0], r[0] - res);
    std::cout << "\tQuasi-Monte Carlo (reverse scrambling) error: " << std::setw(16) << std::setprecision(12) << error2 << std::endl;
  }
  double error3;
  {
    WallTimer tim("\tQuasi-Monte Carlo (no scrambling) time:       ");
    IdentityPerScheme ips;
    QMCarloCubeQuadrature qmc(func.indim(), level, ips);
    qmc.integrate(func, level, sthread::detach_thread_group::max_parallel_threads, r);
    error3 = std::max(res - r[0], r[0] - res);
    std::cout << "\tQuasi-Monte Carlo (no scrambling) error:      " << std::setw(16) << std::setprecision(12) << error3 << std::endl;
  }

  return error1 < tol && error2 < tol && error3 < tol;
}

/****************************************************/
/*     definition of TestRunnable subclasses        */
/****************************************************/
class SmolyakNormalMom1 : public TestRunnable
{
public:
  SmolyakNormalMom1()
    : TestRunnable("Smolyak normal moments (dim=2, level=4, order=4)", 4, 2)
  {
  }

  bool
  run() const override
  {
    GeneralMatrix m(2, 2);
    m.zeros();
    m.get(0, 0) = 1;
    m.get(1, 1) = 1;
    return smolyak_normal_moments(m, 4, 4);
  }
};

class SmolyakNormalMom2 : public TestRunnable
{
public:
  SmolyakNormalMom2()
    : TestRunnable("Smolyak normal moments (dim=3, level=8, order=8)", 8, 3)
  {
  }

  bool
  run() const override
  {
    GeneralMatrix m(3, 3);
    m.zeros();
    m.get(0, 0) = 1;
    m.get(0, 2) = 0.5;
    m.get(1, 1) = 1;
    m.get(1, 0) = 0.5;
    m.get(2, 2) = 2;
    m.get(2, 1) = 4;
    return smolyak_normal_moments(m, 8, 8);
  }
};

class ProductNormalMom1 : public TestRunnable
{
public:
  ProductNormalMom1()
    : TestRunnable("Product normal moments (dim=2, level=4, order=4)", 4, 2)
  {
  }

  bool
  run() const override
  {
    GeneralMatrix m(2, 2);
    m.zeros();
    m.get(0, 0) = 1;
    m.get(1, 1) = 1;
    return product_normal_moments(m, 4, 4);
  }
};

class ProductNormalMom2 : public TestRunnable
{
public:
  ProductNormalMom2()
    : TestRunnable("Product normal moments (dim=3, level=8, order=8)", 8, 3)
  {
  }

  bool
  run() const override
  {
    GeneralMatrix m(3, 3);
    m.zeros();
    m.get(0, 0) = 1;
    m.get(0, 2) = 0.5;
    m.get(1, 1) = 1;
    m.get(1, 0) = 0.5;
    m.get(2, 2) = 2;
    m.get(2, 1) = 4;
    return product_normal_moments(m, 8, 8);
  }
};

// Note that here we pass 1,1 to tls since smolyak has its own PascalTriangle
class F1GaussLegendre : public TestRunnable
{
public:
  F1GaussLegendre()
    : TestRunnable("Function1 Gauss-Legendre (dim=6, level=13", 1, 1)
  {
  }

  bool
  run() const override
  {
    Function1Trans f1(6);
    Vector res(1);
    res[0] = 1.0;
    return smolyak_product_cube(f1, res, 1e-2, 13);
  }
};

class F1QuasiMCarlo : public TestRunnable
{
public:
  F1QuasiMCarlo()
    : TestRunnable("Function1 Quasi-Monte Carlo (dim=6, level=1000000)", 1, 1)
  {
  }

  bool
  run() const override
  {
    Function1 f1(6);
    return qmc_cube(f1, 1.0, 1.e-4, 1000000);
  }
};

int
main()
{
  std::vector<std::unique_ptr<TestRunnable>> all_tests;
  // Fill in vector of all tests
  all_tests.push_back(std::make_unique<SmolyakNormalMom1>());
  all_tests.push_back(std::make_unique<SmolyakNormalMom2>());
  all_tests.push_back(std::make_unique<ProductNormalMom1>());
  all_tests.push_back(std::make_unique<ProductNormalMom2>());
  all_tests.push_back(std::make_unique<F1GaussLegendre>());
  all_tests.push_back(std::make_unique<F1QuasiMCarlo>());

  // Find maximum dimension and maximum nvar
  int dmax = 0;
  int nvmax = 0;
  for (const auto &test : all_tests)
    {
      dmax = std::max(dmax, test->dim);
      nvmax = std::max(nvmax, test->nvar);
    }
  TLStatic::init(dmax, nvmax); // initialize library

  // Launch the tests
  int success = 0;
  for (const auto &test : all_tests)
    {
      try
        {
          if (test->test())
            success++;
        }
      catch (const TLException &e)
        {
          std::cout << "Caught TL exception in <" << test->name << ">:" << std::endl;
          e.print();
        }
      catch (SylvException &e)
        {
          std::cout << "Caught Sylv exception in <" << test->name << ">:" << std::endl;
          e.printMessage();
        }
    }

  int nfailed = all_tests.size() - success;
  std::cout << "There were " << nfailed << " tests that failed out of "
            << all_tests.size() << " tests run." << std::endl;

  if (nfailed)
    return EXIT_FAILURE;
  else
    return EXIT_SUCCESS;
}