1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
|
/*
* Copyright © 2004 Ondra Kamenik
* Copyright © 2019 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <http://www.gnu.org/licenses/>.
*/
// Decision rule and simulation
/* The main purpose of this file is a decision rule representation which can
run a simulation. So we define an interface for classes providing
realizations of random shocks, and define the class DecisionRule. The latter
basically takes tensor container of derivatives of policy rules, and adds
them up with respect to σ. The class allows to specify the σ different from
1.
In addition, we provide classes for running simulations and storing the
results, calculating some statistics and generating IRF. The class
DRFixPoint allows for calculation of the fix point of a given decision
rule. */
#ifndef DECISION_RULE_H
#define DECISION_RULE_H
#include <matio.h>
#include "kord_exception.hh"
#include "korder.hh"
#include "normal_conjugate.hh"
#include <memory>
#include <random>
#include <string>
/* This is a general interface to a shock realizations. The interface has only
one method returning the shock realizations at the given time. This method
is not constant, since it may change a state of the object. */
class ShockRealization
{
public:
virtual ~ShockRealization() = default;
virtual void get(int n, Vector &out) = 0;
virtual int numShocks() const = 0;
};
/* This class is an abstract interface to decision rule. Its main purpose is to
define a common interface for simulation of a decision rule. We need only a
simulate, evaluate, centralized clone and output method. */
class DecisionRule
{
public:
enum class emethod { horner, trad };
virtual ~DecisionRule() = default;
// simulates the rule for a given realization of the shocks
virtual TwoDMatrix simulate(emethod em, int np, const ConstVector &ystart,
ShockRealization &sr) const = 0;
/* primitive evaluation (it takes a vector of state variables (predetermined,
both and shocks) and returns the next period variables. Both input and
output are in deviations from the rule's steady. */
virtual void eval(emethod em, Vector &out, const ConstVector &v) const = 0;
/* makes only one step of simulation (in terms of absolute values, not
deviations) */
virtual void evaluate(emethod em, Vector &out, const ConstVector &ys,
const ConstVector &u) const = 0;
// writes the decision rule to the MAT file
virtual void writeMat(mat_t *fd, const std::string &prefix) const = 0;
/* returns a new copy of the decision rule, which is centralized about
provided fix-point */
virtual std::unique_ptr<DecisionRule> centralizedClone(const Vector &fixpoint) const = 0;
virtual const Vector &getSteady() const = 0;
virtual int nexog() const = 0;
virtual const PartitionY &getYPart() const = 0;
};
/* The main purpose of this class is to implement DecisionRule interface, which
is a simulation. To be able to do this we have to know the partitioning of
state vector y since we will need to pick only predetermined part y*. Also,
we need to know the steady state.
The decision rule will take the form:
ₙ ᵢ ⎡y*ₜ₋₁ − ȳ*⎤αₘ
yₜ − ȳ = ∑ [g_(yu)ⁱ]_α₁…αᵢ ∏ ⎢ ⎥
ⁱ⁼⁰ ᵐ⁼¹ ⎣ uₜ ⎦
where the tensors [g_(yu)ⁱ] are tensors of the constructed container, and ȳ
is the steady state.
If we know the fix point of the rule (conditional zero shocks) ỹ, the rule
can be transformed to so called “centralized” form. This is very similar to
the form above but the zero dimensional tensor is zero:
ₙ ᵢ ⎡y*ₜ₋₁ − ỹ*⎤αₘ
yₜ − ỹ = ∑ [g_(yu)ⁱ]_α₁…αᵢ ∏ ⎢ ⎥
ⁱ⁼¹ ᵐ⁼¹ ⎣ uₜ ⎦
We provide a method and a constructor to transform a rule to the centralized
form.
The class is templated, the template argument is either Storage::fold or
Storage::unfold. So, there are two implementations of the DecisionRule
interface. */
template<Storage t>
class DecisionRuleImpl : public ctraits<t>::Tpol, public DecisionRule
{
protected:
using _Tpol = typename ctraits<t>::Tpol;
using _Tg = typename ctraits<t>::Tg;
using _Ttensor = typename ctraits<t>::Ttensor;
using _Ttensym = typename ctraits<t>::Ttensym;
const Vector ysteady;
const PartitionY ypart;
const int nu;
public:
DecisionRuleImpl(const _Tpol &pol, const PartitionY &yp, int nuu,
const ConstVector &ys)
: ctraits<t>::Tpol(pol), ysteady(ys), ypart(yp), nu(nuu)
{
}
DecisionRuleImpl(_Tpol &pol, const PartitionY &yp, int nuu,
const ConstVector &ys)
: ctraits<t>::Tpol(0, yp.ny(), pol), ysteady(ys), ypart(yp),
nu(nuu)
{
}
DecisionRuleImpl(const _Tg &g, const PartitionY &yp, int nuu,
const ConstVector &ys, double sigma)
: ctraits<t>::Tpol(yp.ny(), yp.nys()+nuu), ysteady(ys), ypart(yp), nu(nuu)
{
fillTensors(g, sigma);
}
DecisionRuleImpl(const DecisionRuleImpl<t> &dr, const ConstVector &fixpoint)
: ctraits<t>::Tpol(dr.ypart.ny(), dr.ypart.nys()+dr.nu),
ysteady(fixpoint), ypart(dr.ypart), nu(dr.nu)
{
centralize(dr);
}
const Vector &
getSteady() const override
{
return ysteady;
}
TwoDMatrix simulate(emethod em, int np, const ConstVector &ystart,
ShockRealization &sr) const override;
void evaluate(emethod em, Vector &out, const ConstVector &ys,
const ConstVector &u) const override;
std::unique_ptr<DecisionRule> centralizedClone(const Vector &fixpoint) const override;
void writeMat(mat_t *fd, const std::string &prefix) const override;
int
nexog() const override
{
return nu;
}
const PartitionY &
getYPart() const override
{
return ypart;
}
protected:
void fillTensors(const _Tg &g, double sigma);
void centralize(const DecisionRuleImpl &dr);
public:
void eval(emethod em, Vector &out, const ConstVector &v) const override;
};
/* Here we have to fill the tensor polynomial. This involves two separated
actions. The first is to evaluate the approximation at a given σ, the second
is to compile the tensors [g_(yu)ⁱ⁺ʲ] from [g_yⁱuʲ]. The first action is
done here, the second is done by method addSubTensor() of a full symmetry
tensor.
The way how the evaluation is done is described here:
The q-order approximation to the solution can be written as:
⎡ ⎤
q 1 ⎢ ⎛ l ⎞⎡ ⎤ ᵢ ⎡ ⎤αₘ ⱼ ⎡ ⎤βₘ ⎥
yₜ − ȳ = ∑ ──⎢ ∑ ⎢ ⎥⎢g_yⁱuʲσᵏ⎥ ∏ ⎢y*ₜ₋₁ − ȳ*⎥ ∏ ⎢uₜ⎥ σᵏ⎥
ˡ⁼¹ l!⎢ⁱ⁺ʲ⁺ᵏ⁼ˡ⎝i,j,k⎠⎣ ⎦α₁…αⱼβ₁…βⱼ ᵐ⁼¹⎣ ⎦ ᵐ⁼¹⎣ ⎦ ⎥
⎣ ⎦
⎡ ⎡ ⎤ ⎤
q ⎢ ⎛i+j⎞⎢ₗ₋ᵢ₋ⱼ 1 ⎛l⎞ ⎡ ⎤ ⎥ ᵢ ⎡ ⎤αₘ ⱼ ⎡ ⎤βₘ⎥
= ∑ ⎢ ∑ ⎢ ⎥⎢ ∑ ── ⎢ ⎥ ⎢g_yⁱuʲσᵏ⎥ σᵏ⎥ ∏ ⎢y*ₜ₋₁ − ȳ*⎥ ∏ ⎢uₜ⎥ ⎥
ˡ⁼¹⎢i+j≤l ⎝ i ⎠⎢ ᵏ⁼⁰ l! ⎝k⎠ ⎣ ⎦α₁…αⱼβ₁…βⱼ ⎥ ᵐ⁼¹⎣ ⎦ ᵐ⁼¹⎣ ⎦ ⎥
⎣ ⎣ ⎦ ⎦
This means that for each i+j+k=l we have to add
1 ⎛l⎞ 1
── ⎢ ⎥ [g_yⁱuʲσᵏ]·σᵏ = ──────── [g_yⁱuʲσᵏ]·σᵏ
l! ⎝k⎠ (i+j)!k!
to [g_(yu)ⁱ⁺ʲ].
⎛i+j⎞
In addition, note that the multiplier ⎝ k ⎠ is applied when the fully symmetric
tensor [g_(yu)ⁱ⁺ʲ] is evaluated.
So we go through i+j=d=0…q and in each loop we form the fully symmetric
tensor [g_(yu)ᵈ] and insert it to the container. */
template<Storage t>
void
DecisionRuleImpl<t>::fillTensors(const _Tg &g, double sigma)
{
IntSequence tns{ypart.nys(), nu};
int dfact = 1;
for (int d = 0; d <= g.getMaxDim(); d++, dfact *= d)
{
auto g_yud = std::make_unique<_Ttensym>(ypart.ny(), ypart.nys()+nu, d);
g_yud->zeros();
// fill tensor of ‘g_yud’ of dimension ‘d’
/* Here we have to fill the tensor [g_(yu)ᵈ]. So we go through all pairs
(i,j) such that i+j=d, and through all k from zero up to maximal
dimension minus d. In this way we go through all symmetries of
[g_yⁱuʲσᵏ] which will be added to [g_(yu)ᵈ].
Note that at the beginning, ‘dfact’ is a factorial of ‘d’. We
calculate ‘kfact’ is equal to k!. As indicated in
DecisionRuleImpl::fillTensors(), the added tensor is thus multiplied
with 1/(d!k!)·σᵏ. */
for (int i = 0; i <= d; i++)
{
int j = d-i;
int kfact = 1;
_Ttensor tmp(ypart.ny(),
TensorDimens(Symmetry{i, j}, tns));
tmp.zeros();
for (int k = 0; k+d <= g.getMaxDim(); k++, kfact *= k)
{
Symmetry sym{i, j, 0, k};
if (g.check(sym))
{
double mult = pow(sigma, k)/dfact/kfact;
tmp.add(mult, g.get(sym));
}
}
g_yud->addSubTensor(tmp);
}
this->insert(std::move(g_yud));
}
}
/* The centralization is straightforward. We suppose here that the object’s
steady state is the fix point ỹ. It is clear that the new derivatives
[g~_(yu)ⁱ] will be equal to the derivatives of the original decision rule
‘dr’ at the new steady state ỹ. So, the new derivatives are obtained by
derivating the given decision rule ‘dr’ and evaluating its polynomial at:
⎡ỹ* − ȳ*⎤
dstate = ⎢ ⎥,
⎣ 0 ⎦
where ȳ is the steady state of the original rule ‘dr’. */
template<Storage t>
void
DecisionRuleImpl<t>::centralize(const DecisionRuleImpl &dr)
{
Vector dstate(ypart.nys() + nu);
dstate.zeros();
Vector dstate_star(dstate, 0, ypart.nys());
ConstVector newsteady_star(ysteady, ypart.nstat, ypart.nys());
ConstVector oldsteady_star(dr.ysteady, ypart.nstat, ypart.nys());
dstate_star.add(1.0, newsteady_star);
dstate_star.add(-1.0, oldsteady_star);
_Tpol pol(dr);
int dfac = 1;
for (int d = 1; d <= dr.getMaxDim(); d++, dfac *= d)
{
pol.derivative(d-1);
auto der = pol.evalPartially(d, dstate);
der->mult(1.0/dfac);
this->insert(std::move(der));
}
}
/* Here we evaluate repeatedly the polynomial storing results in the created
matrix. For exogenous shocks, we use ShockRealization class, for
predetermined variables, we use ‘ystart’ as the first state. The ‘ystart’
vector is required to be all state variables ypart.ny(), although only the
predetermined part of ‘ystart’ is used.
We simulate in terms of Δy, this is, at the beginning the ‘ysteady’ is
canceled from ‘ystart’, we simulate, and at the end ‘ysteady’ is added to
all columns of the result. */
template<Storage t>
TwoDMatrix
DecisionRuleImpl<t>::simulate(emethod em, int np, const ConstVector &ystart,
ShockRealization &sr) const
{
KORD_RAISE_IF(ysteady.length() != ystart.length(),
"Start and steady lengths differ in DecisionRuleImpl::simulate");
TwoDMatrix res(ypart.ny(), np);
// initialize vectors and subvectors for simulation
/* Here allocate the stack vector (Δy*,u), define the subvectors ‘dy’, and
‘u’, then we pickup predetermined parts of ‘ystart’ and ‘ysteady’. */
Vector dyu(ypart.nys()+nu);
ConstVector ystart_pred(ystart, ypart.nstat, ypart.nys());
ConstVector ysteady_pred(ysteady, ypart.nstat, ypart.nys());
Vector dy(dyu, 0, ypart.nys());
Vector u(dyu, ypart.nys(), nu);
// perform the first step of simulation
/* We cancel ‘ysteady’ from ‘ystart’, get realization to ‘u’, and evaluate
the polynomial. */
dy = ystart_pred;
dy.add(-1.0, ysteady_pred);
sr.get(0, u);
Vector out{res.getCol(0)};
eval(em, out, dyu);
// perform all other steps of simulations
/* Also clear. If the result at some period is not finite, we pad the rest of
the matrix with zeros. */
int i = 1;
while (i < np)
{
ConstVector ym{res.getCol(i-1)};
ConstVector dym(ym, ypart.nstat, ypart.nys());
dy = dym;
sr.get(i, u);
Vector out{res.getCol(i)};
eval(em, out, dyu);
if (!out.isFinite())
{
if (i+1 < np)
{
TwoDMatrix rest(res, i+1, np-i-1);
rest.zeros();
}
break;
}
i++;
}
// add the steady state to columns of ‘res’
/* Even clearer. We add the steady state to the numbers computed above and
leave the padded columns to zero. */
for (int j = 0; j < i; j++)
{
Vector col{res.getCol(j)};
col.add(1.0, ysteady);
}
return res;
}
/* This is one period evaluation of the decision rule. The simulation is a
sequence of repeated one period evaluations with a difference, that the
steady state (fix point) is cancelled and added once. Hence we have two
special methods. */
template<Storage t>
void
DecisionRuleImpl<t>::evaluate(emethod em, Vector &out, const ConstVector &ys,
const ConstVector &u) const
{
KORD_RAISE_IF(ys.length() != ypart.nys() || u.length() != nu,
"Wrong dimensions of input vectors in DecisionRuleImpl::evaluate");
KORD_RAISE_IF(out.length() != ypart.ny(),
"Wrong dimension of output vector in DecisionRuleImpl::evaluate");
ConstVector ysteady_pred(ysteady, ypart.nstat, ypart.nys());
Vector ys_u(ypart.nys()+nu);
Vector ys_u1(ys_u, 0, ypart.nys());
ys_u1 = ys;
ys_u1.add(-1.0, ysteady_pred);
Vector ys_u2(ys_u, ypart.nys(), nu);
ys_u2 = u;
eval(em, out, ys_u);
out.add(1.0, ysteady);
}
/* This is easy. We just return the newly created copy using the centralized
constructor. */
template<Storage t>
std::unique_ptr<DecisionRule>
DecisionRuleImpl<t>::centralizedClone(const Vector &fixpoint) const
{
return std::make_unique<DecisionRuleImpl<t>>(*this, fixpoint);
}
/* Here we only encapsulate two implementations to one, deciding according to
the parameter. */
template<Storage t>
void
DecisionRuleImpl<t>::eval(emethod em, Vector &out, const ConstVector &v) const
{
if (em == emethod::horner)
_Tpol::evalHorner(out, v);
else
_Tpol::evalTrad(out, v);
}
/* Write the decision rule and steady state to the MAT file. */
template<Storage t>
void
DecisionRuleImpl<t>::writeMat(mat_t *fd, const std::string &prefix) const
{
ctraits<t>::Tpol::writeMat(fd, prefix);
TwoDMatrix dum(ysteady.length(), 1);
dum.getData() = ysteady;
ConstTwoDMatrix(dum).writeMat(fd, prefix + "_ss");
}
/* This is exactly the same as DecisionRuleImpl<Storage::fold>. The only
difference is that we have a conversion from UnfoldDecisionRule, which is
exactly DecisionRuleImpl<Storage::unfold>. */
class UnfoldDecisionRule;
class FoldDecisionRule : public DecisionRuleImpl<Storage::fold>
{
friend class UnfoldDecisionRule;
public:
FoldDecisionRule(const ctraits<Storage::fold>::Tpol &pol, const PartitionY &yp, int nuu,
const ConstVector &ys)
: DecisionRuleImpl<Storage::fold>(pol, yp, nuu, ys)
{
}
FoldDecisionRule(ctraits<Storage::fold>::Tpol &pol, const PartitionY &yp, int nuu,
const ConstVector &ys)
: DecisionRuleImpl<Storage::fold>(pol, yp, nuu, ys)
{
}
FoldDecisionRule(const ctraits<Storage::fold>::Tg &g, const PartitionY &yp, int nuu,
const ConstVector &ys, double sigma)
: DecisionRuleImpl<Storage::fold>(g, yp, nuu, ys, sigma)
{
}
FoldDecisionRule(const DecisionRuleImpl<Storage::fold> &dr, const ConstVector &fixpoint)
: DecisionRuleImpl<Storage::fold>(dr, fixpoint)
{
}
FoldDecisionRule(const UnfoldDecisionRule &udr);
};
/* This is exactly the same as DecisionRuleImpl<Storage::unfold>, but with a
conversion from FoldDecisionRule, which is exactly
DecisionRuleImpl<Storage::fold>. */
class UnfoldDecisionRule : public DecisionRuleImpl<Storage::unfold>
{
friend class FoldDecisionRule;
public:
UnfoldDecisionRule(const ctraits<Storage::unfold>::Tpol &pol, const PartitionY &yp, int nuu,
const ConstVector &ys)
: DecisionRuleImpl<Storage::unfold>(pol, yp, nuu, ys)
{
}
UnfoldDecisionRule(ctraits<Storage::unfold>::Tpol &pol, const PartitionY &yp, int nuu,
const ConstVector &ys)
: DecisionRuleImpl<Storage::unfold>(pol, yp, nuu, ys)
{
}
UnfoldDecisionRule(const ctraits<Storage::unfold>::Tg &g, const PartitionY &yp, int nuu,
const ConstVector &ys, double sigma)
: DecisionRuleImpl<Storage::unfold>(g, yp, nuu, ys, sigma)
{
}
UnfoldDecisionRule(const DecisionRuleImpl<Storage::unfold> &dr, const ConstVector &fixpoint)
: DecisionRuleImpl<Storage::unfold>(dr, fixpoint)
{
}
UnfoldDecisionRule(const FoldDecisionRule &udr);
};
/* This class serves for calculation of the fix point of the decision rule
given that the shocks are zero. The class is very similar to the
DecisionRuleImpl. Besides the calculation of the fix point, the only
difference between DRFixPoint and DecisionRuleImpl is that the derivatives
wrt. shocks are ignored (since shocks are zero during the calculations).
That is why have a different fillTensor() method.
The solution algorithm is Newton and is described in
DRFixPoint::solveNewton(). It solves F(y)=0, where F=g(y,0)−y. The function
F is given by its derivatives ‘bigf’. The Jacobian of the solved system is
given by derivatives stored in ‘bigfder’. */
template<Storage t>
class DRFixPoint : public ctraits<t>::Tpol
{
using _Tpol = typename ctraits<t>::Tpol;
using _Tg = typename ctraits<t>::Tg;
using _Ttensor = typename ctraits<t>::Ttensor;
using _Ttensym = typename ctraits<t>::Ttensym;
constexpr static int max_iter = 10000;
constexpr static int max_newton_iter = 50;
constexpr static int newton_pause = 100;
constexpr static double tol = 1e-10;
const Vector ysteady;
const PartitionY ypart;
std::unique_ptr<_Tpol> bigf;
std::unique_ptr<_Tpol> bigfder;
public:
using emethod = typename DecisionRule::emethod;
DRFixPoint(const _Tg &g, const PartitionY &yp,
const Vector &ys, double sigma);
bool calcFixPoint(emethod em, Vector &out);
int
getNumIter() const
{
return iter;
}
int
getNewtonLastIter() const
{
return newton_iter_last;
}
int
getNewtonTotalIter() const
{
return newton_iter_total;
}
protected:
void fillTensors(const _Tg &g, double sigma);
bool solveNewton(Vector &y);
private:
int iter;
int newton_iter_last;
int newton_iter_total;
};
/* Here we have to setup the function F=g(y,0)−y and ∂F/∂y. The former is taken
from the given derivatives of g where a unit matrix is subtracted from the
first derivative (Symmetry{1}). Then the derivative of the F polynomial is
calculated. */
template<Storage t>
DRFixPoint<t>::DRFixPoint(const _Tg &g, const PartitionY &yp,
const Vector &ys, double sigma)
: ctraits<t>::Tpol(yp.ny(), yp.nys()),
ysteady(ys), ypart(yp)
{
fillTensors(g, sigma);
_Tpol yspol(ypart.nstat, ypart.nys(), *this);
bigf = std::make_unique<_Tpol>(const_cast<const _Tpol &>(yspol));
_Ttensym &frst = bigf->get(Symmetry{1});
for (int i = 0; i < ypart.nys(); i++)
frst.get(i, i) = frst.get(i, i) - 1;
bigfder = std::make_unique<_Tpol>(*bigf, 0);
}
/* Here we fill the tensors for the DRFixPoint class. We ignore the derivatives
[g_yⁱuʲσᵏ] for which j>0. So we go through all dimensions ‘d’, and all ‘k’
such that ‘d+k’ is between the maximum dimension and ‘d’, and add
σᵏ/(d!k!)[g_yᵈσᵏ] to the tensor [g_yᵈ]. */
template<Storage t>
void
DRFixPoint<t>::fillTensors(const _Tg &g, double sigma)
{
int dfact = 1;
for (int d = 0; d <= g.getMaxDim(); d++, dfact *= d)
{
auto g_yd = std::make_unique<_Ttensym>(ypart.ny(), ypart.nys(), d);
g_yd->zeros();
int kfact = 1;
for (int k = 0; d+k <= g.getMaxDim(); k++, kfact *= k)
{
if (g.check(Symmetry{d, 0, 0, k}))
{
const _Ttensor &ten = g.get(Symmetry{d, 0, 0, k});
double mult = pow(sigma, k)/dfact/kfact;
g_yd->add(mult, ten);
}
}
this->insert(std::move(g_yd));
}
}
/* This tries to solve polynomial equation F(y)=0, where F polynomial is ‘bigf’
and its derivative is in ‘bigfder’. It returns true if the Newton converged.
The method takes the given vector as initial guess, and rewrites it with a
solution. The method guarantees to return the vector, which has smaller norm
of the residual. That is why the input/output vector ‘y’ is always changed.
The method proceeds with a Newton step, if the Newton step improves the
residual error. So we track residual errors in ‘flastnorm’ and ‘fnorm’
(former and current). In addition, at each step we search for an
underrelaxation parameter ‘urelax’, which improves the residual. If ‘urelax’
is less that ‘urelax_threshold’, we stop searching and stop the Newton. */
template<Storage t>
bool
DRFixPoint<t>::solveNewton(Vector &y)
{
const double urelax_threshold = 1.e-5;
Vector sol(const_cast<const Vector &>(y));
Vector delta(y.length());
newton_iter_last = 0;
bool delta_finite = true;
double flastnorm = 0.0;
double fnorm = 0.0;
bool converged = false;
double urelax = 1.0;
do
{
auto jacob = bigfder->evalPartially(1, sol);
bigf->evalHorner(delta, sol);
if (newton_iter_last == 0)
flastnorm = delta.getNorm();
delta_finite = delta.isFinite();
if (delta_finite)
{
ConstTwoDMatrix(*jacob).multInvLeft(delta);
// find ‘urelax’ improving residual
/* Here we find the ‘urelax’. We cycle as long as the new residual
size ‘fnorm’ is greater than last residual size ‘flastnorm’. If
the urelax is less than ‘urelax_threshold’ we give up. The
‘urelax’ is damped by the ratio of ‘flastnorm’ and ‘fnorm’. It the
ratio is close to one, we damp by one half. */
bool urelax_found = false;
urelax = 1.0;
while (!urelax_found && urelax > urelax_threshold)
{
Vector soltmp(const_cast<const Vector &>(sol));
soltmp.add(-urelax, delta);
Vector f(sol.length());
bigf->evalHorner(f, soltmp);
fnorm = f.getNorm();
if (fnorm <= flastnorm)
urelax_found = true;
else
urelax *= std::min(0.5, flastnorm/fnorm);
}
sol.add(-urelax, delta);
delta_finite = delta.isFinite();
}
newton_iter_last++;
converged = delta_finite && fnorm < tol;
flastnorm = fnorm;
}
while (!converged && newton_iter_last < max_newton_iter
&& urelax > urelax_threshold);
newton_iter_total += newton_iter_last;
if (!converged)
newton_iter_last = 0;
y = const_cast<const Vector &>(sol);
return converged;
}
/* This method solves the fix point of the no-shocks rule yₜ₊₁=f(yₜ). It
combines dull steps with Newton attempts. The dull steps correspond to
evaluations setting yₜ₊₁=f(yₜ). For reasonable models the dull steps
converge to the fix-point but very slowly. That is why we make Newton
attempt from time to time. The frequency of the Newton attempts is given by
‘newton_pause’. We perform the calculations in deviations from the steady
state. So, at the end, we have to add the steady state.
The method also sets the members ‘iter’, ‘newton_iter_last’ and
‘newton_iter_total’. These numbers can be examined later.
The ‘out’ vector is not touched if the algorithm has not convered. */
template<Storage t>
bool
DRFixPoint<t>::calcFixPoint(emethod em, Vector &out)
{
KORD_RAISE_IF(out.length() != ypart.ny(),
"Wrong length of out in DRFixPoint::calcFixPoint");
Vector delta(ypart.nys());
Vector ystar(ypart.nys());
ystar.zeros();
iter = 0;
newton_iter_last = 0;
newton_iter_total = 0;
bool converged = false;
do
{
if ((iter/newton_pause)*newton_pause == iter)
converged = solveNewton(ystar);
if (!converged)
{
bigf->evalHorner(delta, ystar);
KORD_RAISE_IF_X(!delta.isFinite(),
"NaN or Inf asserted in DRFixPoint::calcFixPoint",
KORD_FP_NOT_FINITE);
ystar.add(1.0, delta);
converged = delta.getNorm() < tol;
}
iter++;
}
while (iter < max_iter && !converged);
if (converged)
{
_Tpol::evalHorner(out, ystar);
out.add(1.0, ysteady);
}
return converged;
}
/* This is a basically a number of matrices of the same dimensions, which can
be obtained as simulation results from a given decision rule and shock
realizations. We also store the realizations of shocks and the starting
point of each simulation. */
class ExplicitShockRealization;
class SimResults
{
protected:
int num_y;
int num_per;
int num_burn;
std::vector<TwoDMatrix> data;
std::vector<ExplicitShockRealization> shocks;
std::vector<ConstVector> start;
public:
SimResults(int ny, int nper, int nburn = 0)
: num_y(ny), num_per(nper), num_burn(nburn)
{
}
void simulate(int num_sim, const DecisionRule &dr, const Vector &start,
const TwoDMatrix &vcov, Journal &journal);
void simulate(int num_sim, const DecisionRule &dr, const Vector &start,
const TwoDMatrix &vcov);
int
getNumPer() const
{
return num_per;
}
int
getNumBurn() const
{
return num_burn;
}
int
getNumSets() const
{
return static_cast<int>(data.size());
}
const TwoDMatrix &
getData(int i) const
{
return data[i];
}
const ExplicitShockRealization &
getShocks(int i) const
{
return shocks[i];
}
const ConstVector &
getStart(int i) const
{
return start[i];
}
bool addDataSet(const TwoDMatrix &d, const ExplicitShockRealization &sr, const ConstVector &st);
void writeMat(const std::string &base, const std::string &lname) const;
void writeMat(mat_t *fd, const std::string &lname) const;
};
/* This does the same as SimResults plus it calculates means and covariances of
the simulated data. */
class SimResultsStats : public SimResults
{
protected:
Vector mean;
TwoDMatrix vcov;
public:
SimResultsStats(int ny, int nper, int nburn = 0)
: SimResults(ny, nper, nburn), mean(ny), vcov(ny, ny)
{
}
void simulate(int num_sim, const DecisionRule &dr, const Vector &start,
const TwoDMatrix &vcov, Journal &journal);
void writeMat(mat_t *fd, const std::string &lname) const;
protected:
void calcMean();
void calcVcov();
};
/* This does the similar thing as SimResultsStats but the statistics are not
calculated over all periods but only within each period. Then we do not
calculate covariances with periods but only variances. */
class SimResultsDynamicStats : public SimResults
{
protected:
TwoDMatrix mean;
TwoDMatrix variance;
public:
SimResultsDynamicStats(int ny, int nper, int nburn = 0)
: SimResults(ny, nper, nburn), mean(ny, nper), variance(ny, nper)
{
}
void simulate(int num_sim, const DecisionRule &dr, const Vector &start,
const TwoDMatrix &vcov, Journal &journal);
void writeMat(mat_t *fd, const std::string &lname) const;
protected:
void calcMean();
void calcVariance();
};
/* This goes through control simulation results, and for each control it adds a
given impulse to a given shock and runs a simulation. The control simulation
is then cancelled and the result is stored. After that these results are
averaged with variances calculated.
The means and the variances are then written to the MAT file. */
class SimulationIRFWorker;
class SimResultsIRF : public SimResults
{
friend class SimulationIRFWorker;
protected:
const SimResults &control;
int ishock;
double imp;
TwoDMatrix means;
TwoDMatrix variances;
public:
SimResultsIRF(const SimResults &cntl, int ny, int nper, int i, double impulse)
: SimResults(ny, nper, 0), control(cntl),
ishock(i), imp(impulse),
means(ny, nper), variances(ny, nper)
{
}
void simulate(const DecisionRule &dr, Journal &journal);
void simulate(const DecisionRule &dr);
void writeMat(mat_t *fd, const std::string &lname) const;
protected:
void calcMeans();
void calcVariances();
};
/* This simulates and gathers all statistics from the real time simulations. In
the simulate() method, it runs RTSimulationWorker’s which accummulate
information from their own estimates. The estimation is done by means of
NormalConj class, which is a conjugate family of densities for normal
distibutions. */
class RTSimulationWorker;
class RTSimResultsStats
{
friend class RTSimulationWorker;
protected:
Vector mean;
TwoDMatrix vcov;
int num_per;
int num_burn;
NormalConj nc;
int incomplete_simulations;
int thrown_periods;
public:
RTSimResultsStats(int ny, int nper, int nburn = 0)
: mean(ny), vcov(ny, ny),
num_per(nper), num_burn(nburn), nc(ny),
incomplete_simulations(0), thrown_periods(0)
{
}
void simulate(int num_sim, const DecisionRule &dr, const Vector &start,
const TwoDMatrix &vcov, Journal &journal);
void simulate(int num_sim, const DecisionRule &dr, const Vector &start,
const TwoDMatrix &vcov);
void writeMat(mat_t *fd, const std::string &lname);
};
/* For each shock, this simulates plus and minus impulse. The class maintains a
vector of simulation results, each gets a particular shock and sign
(positive/negative). The results of type SimResultsIRF are stored in a
vector so that even ones are positive, odd ones are negative.
The constructor takes a reference to the control simulations, which must be
finished before the constructor is called. The control simulations are
passed to all SimResultsIRF’s.
The constructor also takes the vector of indices of exogenous variables
(‘ili’) for which the IRFs are generated. The list is kept (as
‘irf_list_ind’) for other methods. */
class DynamicModel;
class IRFResults
{
std::vector<SimResultsIRF> irf_res;
const DynamicModel &model;
std::vector<int> irf_list_ind;
public:
IRFResults(const DynamicModel &mod, const DecisionRule &dr,
const SimResults &control, std::vector<int> ili,
Journal &journal);
void writeMat(mat_t *fd, const std::string &prefix) const;
};
/* This worker simulates the given decision rule and inserts the result to
SimResults. */
class SimulationWorker : public sthread::detach_thread
{
protected:
SimResults &res;
const DecisionRule &dr;
DecisionRule::emethod em;
int np;
const Vector &st;
ShockRealization &sr;
public:
SimulationWorker(SimResults &sim_res,
const DecisionRule &dec_rule,
DecisionRule::emethod emet, int num_per,
const Vector &start, ShockRealization &shock_r)
: res(sim_res), dr(dec_rule), em(emet), np(num_per), st(start), sr(shock_r)
{
}
void operator()(std::mutex &mut) override;
};
/* This worker simulates a given impulse ‘imp’ to a given shock ‘ishock’ based
on a given control simulation with index ‘idata’. The control simulations
are contained in SimResultsIRF which is passed to the constructor. */
class SimulationIRFWorker : public sthread::detach_thread
{
SimResultsIRF &res;
const DecisionRule &dr;
DecisionRule::emethod em;
int np;
int idata;
int ishock;
double imp;
public:
SimulationIRFWorker(SimResultsIRF &sim_res,
const DecisionRule &dec_rule,
DecisionRule::emethod emet, int num_per,
int id, int ishck, double impulse)
: res(sim_res), dr(dec_rule), em(emet), np(num_per),
idata(id), ishock(ishck), imp(impulse)
{
}
void operator()(std::mutex &mut) override;
};
/* This class does the real time simulation job for RTSimResultsStats. It
simulates the model period by period. It accummulates the information in
‘RTSimResultsStats::nc’. If NaN or Inf is observed, it ends the simulation
and adds to the ‘thrown_periods’ of RTSimResultsStats. */
class RTSimulationWorker : public sthread::detach_thread
{
protected:
RTSimResultsStats &res;
const DecisionRule &dr;
DecisionRule::emethod em;
int np;
const Vector &ystart;
ShockRealization &sr;
public:
RTSimulationWorker(RTSimResultsStats &sim_res,
const DecisionRule &dec_rule,
DecisionRule::emethod emet, int num_per,
const Vector &start, ShockRealization &shock_r)
: res(sim_res), dr(dec_rule), em(emet), np(num_per), ystart(start), sr(shock_r)
{
}
void operator()(std::mutex &mut) override;
};
/* This class generates draws from Gaussian distribution with zero mean and the
given variance-covariance matrix. It stores the factor of vcov V matrix,
yielding FFᵀ = V. */
class RandomShockRealization : virtual public ShockRealization
{
protected:
std::mt19937 mtwister;
std::normal_distribution<> dis;
TwoDMatrix factor;
public:
RandomShockRealization(const ConstTwoDMatrix &v, decltype(mtwister)::result_type iseed)
: mtwister(iseed), factor(v.nrows(), v.nrows())
{
schurFactor(v);
}
void get(int n, Vector &out) override;
int
numShocks() const override
{
return factor.nrows();
}
protected:
void choleskyFactor(const ConstTwoDMatrix &v);
void schurFactor(const ConstTwoDMatrix &v);
};
/* This is just a matrix of finite numbers. It can be constructed from any
ShockRealization with a given number of periods. */
class ExplicitShockRealization : virtual public ShockRealization
{
TwoDMatrix shocks;
public:
explicit ExplicitShockRealization(const ConstTwoDMatrix &sh)
: shocks(sh)
{
}
ExplicitShockRealization(ShockRealization &sr, int num_per);
void get(int n, Vector &out) override;
int
numShocks() const override
{
return shocks.nrows();
}
const TwoDMatrix &
getShocks() const
{
return shocks;
}
void addToShock(int ishock, int iper, double val);
void
print() const
{
shocks.print();
}
};
/* This represents a user given shock realization. The first matrix of the
constructor is a covariance matrix of shocks, the second matrix is a
rectangular matrix, where columns correspond to periods, rows to shocks. If
an element of the matrix is NaN or ±∞, then the random shock is taken
instead of that element.
In this way it is a generalization of both RandomShockRealization and
ExplicitShockRealization. */
class GenShockRealization : public RandomShockRealization, public ExplicitShockRealization
{
public:
GenShockRealization(const ConstTwoDMatrix &v, const ConstTwoDMatrix &sh, int seed)
: RandomShockRealization(v, seed), ExplicitShockRealization(sh)
{
KORD_RAISE_IF(sh.nrows() != v.nrows() || v.nrows() != v.ncols(),
"Wrong dimension of input matrix in GenShockRealization constructor");
}
void get(int n, Vector &out) override;
int
numShocks() const override
{
return RandomShockRealization::numShocks();
}
};
#endif
|