File: GeneralMatrix.hh

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (621 lines) | stat: -rw-r--r-- 16,008 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
/*
 * Copyright © 2004-2011 Ondra Kamenik
 * Copyright © 2019 Dynare Team
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef GENERAL_MATRIX_H
#define GENERAL_MATRIX_H

#include "Vector.hh"
#include "SylvException.hh"

#include <algorithm>
#include <memory>
#include <utility>
#include <string>

template<class T>
class TransposedMatrix
{
  friend class GeneralMatrix;
  template<class T2>
  friend GeneralMatrix operator*(const ConstGeneralMatrix &a, const TransposedMatrix<T2> &b);
  template<class T2>
  friend GeneralMatrix operator*(const TransposedMatrix<T2> &a, const ConstGeneralMatrix &b);
  template<class T1, class T2>
  friend GeneralMatrix operator*(const TransposedMatrix<T1> &a, const TransposedMatrix<T2> &b);
private:
  T &orig;
public:
  TransposedMatrix(T &orig_arg) : orig{orig_arg}
  {
  };
};

// Syntactic sugar for representing a transposed matrix
template<class T>
TransposedMatrix<T>
transpose(T &m)
{
  return TransposedMatrix<T>(m);
}

class GeneralMatrix;

class ConstGeneralMatrix
{
  friend class GeneralMatrix;
  friend GeneralMatrix operator*(const ConstGeneralMatrix &a, const ConstGeneralMatrix &b);
  template<class T>
  friend GeneralMatrix operator*(const ConstGeneralMatrix &a, const TransposedMatrix<T> &b);
  template<class T>
  friend GeneralMatrix operator*(const TransposedMatrix<T> &a, const ConstGeneralMatrix &b);
  template<class T1, class T2>
  friend GeneralMatrix operator*(const TransposedMatrix<T1> &a, const TransposedMatrix<T2> &b);
protected:
  ConstVector data; // Has unit-stride
  int rows;
  int cols;
  int ld;
public:
  ConstGeneralMatrix(ConstVector d, int m, int n)
    : data(std::move(d)), rows(m), cols(n), ld(m)
  {
    if (data.skip() > 1)
      throw SYLV_MES_EXCEPTION("Vector must have unit-stride");
    if (data.length() < m*n)
      throw SYLV_MES_EXCEPTION("Vector is too small");
  }
  ConstGeneralMatrix(const ConstGeneralMatrix &m) = default;
  ConstGeneralMatrix(ConstGeneralMatrix &&m) = default;
  // Implicit conversion from GeneralMatrix is ok, since it's cheap
  ConstGeneralMatrix(const GeneralMatrix &m);
  // Create submatrix (with data sharing)
  ConstGeneralMatrix(const GeneralMatrix &m, int i, int j, int nrows, int ncols);
  // Create submatrix (with data sharing)
  ConstGeneralMatrix(const ConstGeneralMatrix &m, int i, int j, int nrows, int ncols);
#if defined(MATLAB_MEX_FILE) || defined(OCTAVE_MEX_FILE)
  explicit ConstGeneralMatrix(const mxArray *p)
    : data(p), rows{static_cast<int>(mxGetM(p))}, cols{static_cast<int>(mxGetN(p))}, ld{rows}
  {
  }
#endif
  virtual ~ConstGeneralMatrix() = default;

  ConstGeneralMatrix &operator=(const ConstGeneralMatrix &v) = delete;
  ConstGeneralMatrix &operator=(ConstGeneralMatrix &&v) = delete;

  const double &
  get(int i, int j) const
  {
    return data[j*ld+i];
  }
  int
  nrows() const
  {
    return rows;
  }
  int
  ncols() const
  {
    return cols;
  }
  int
  getLD() const
  {
    return ld;
  }
  const double *
  base() const
  {
    return data.base();
  }
  const ConstVector &
  getData() const
  {
    return data;
  }
  ConstVector getRow(int row) const;
  ConstVector getCol(int col) const;

  double getNormInf() const;
  double getNorm1() const;
  /* x = scalar(a)*x + scalar(b)*this*d */
  void multVec(double a, Vector &x, double b, const ConstVector &d) const;
  /* x = scalar(a)*x + scalar(b)*this'*d */
  void multVecTrans(double a, Vector &x, double b, const ConstVector &d) const;
  /* x = x + this*d */
  void
  multaVec(Vector &x, const ConstVector &d) const
  {
    multVec(1.0, x, 1.0, d);
  }
  /* x = x + this'*d */
  void
  multaVecTrans(Vector &x, const ConstVector &d) const
  {
    multVecTrans(1.0, x, 1.0, d);
  }
  /* x = x - this*d */
  void
  multsVec(Vector &x, const ConstVector &d) const
  {
    multVec(1.0, x, -1.0, d);
  }
  /* x = x - this'*d */
  void
  multsVecTrans(Vector &x, const ConstVector &d) const
  {
    multVecTrans(1.0, x, -1.0, d);
  }
  /* m = inv(this)*m */
  void multInvLeft(GeneralMatrix &m) const;
  /* m = inv(this')*m */
  void multInvLeftTrans(GeneralMatrix &m) const;
  /* d = inv(this)*d */
  void multInvLeft(Vector &d) const;
  /* d = inv(this')*d */
  void multInvLeftTrans(Vector &d) const;

  bool isFinite() const;
  /** Returns true of the matrix is exactly zero. */
  bool isZero() const;

  virtual void print() const;
protected:
  void multInvLeft(const std::string &trans, int mrows, int mcols, int mld, double *d) const;
};

class GeneralMatrix
{
  friend class ConstGeneralMatrix;
  friend GeneralMatrix operator*(const ConstGeneralMatrix &a, const ConstGeneralMatrix &b);
  template<class T>
  friend GeneralMatrix operator*(const ConstGeneralMatrix &a, const TransposedMatrix<T> &b);
  template<class T>
  friend GeneralMatrix operator*(const TransposedMatrix<T> &a, const ConstGeneralMatrix &b);
  template<class T1, class T2>
  friend GeneralMatrix operator*(const TransposedMatrix<T1> &a, const TransposedMatrix<T2> &b);
protected:
  Vector data; // Has unit-stride
  int rows;
  int cols;
  int ld;
public:
  GeneralMatrix(int m, int n)
    : data(m*n), rows(m), cols(n), ld(m)
  {
  }
  GeneralMatrix(Vector d, int m, int n)
    : data(std::move(d)), rows(m), cols(n), ld(m)
  {
    if (data.skip() > 1)
      throw SYLV_MES_EXCEPTION("Vector must have unit-stride");
    if (data.length() < m*n)
      throw SYLV_MES_EXCEPTION("Vector is too small");
  }

  /* The copies will have ld==rows, for memory efficiency (hence we do not use
     the default copy constructor) */
  GeneralMatrix(const GeneralMatrix &m);
  // We don't want implict conversion from ConstGeneralMatrix, since it's expensive
  explicit GeneralMatrix(const ConstGeneralMatrix &m);

  GeneralMatrix(GeneralMatrix &&m) = default;

  template<class T>
  explicit GeneralMatrix(const TransposedMatrix<T> &m)
    : data(m.orig.rows*m.orig.cols), rows(m.orig.cols), cols(m.orig.rows), ld(rows)
  {
    for (int i = 0; i < rows; i++)
      for (int j = 0; j < cols; j++)
        get(i, j) = m.orig.get(j, i);
  }

  // Create submatrix (with data copy)
  GeneralMatrix(const GeneralMatrix &m, int i, int j, int nrows, int ncols);
  // Create submatrix (with data sharing)
  GeneralMatrix(GeneralMatrix &m, int i, int j, int nrows, int ncols);

#if defined(MATLAB_MEX_FILE) || defined(OCTAVE_MEX_FILE)
  explicit GeneralMatrix(mxArray *p)
    : data(p), rows{static_cast<int>(mxGetM(p))}, cols{static_cast<int>(mxGetN(p))}, ld{rows}
  {
  }
#endif

  virtual ~GeneralMatrix() = default;
  GeneralMatrix &operator=(const GeneralMatrix &m) = default;
  GeneralMatrix &operator=(GeneralMatrix &&m) = default;
  GeneralMatrix &operator=(const ConstGeneralMatrix &m);

  const double &
  get(int i, int j) const
  {
    return data[j*ld+i];
  }
  double &
  get(int i, int j)
  {
    return data[j*ld+i];
  }
  int
  nrows() const
  {
    return rows;
  }
  int
  ncols() const
  {
    return cols;
  }
  int
  getLD() const
  {
    return ld;
  }
  double *
  base()
  {
    return data.base();
  }
  const double *
  base() const
  {
    return data.base();
  }
  Vector &
  getData()
  {
    return data;
  }
  ConstVector
  getData() const
  {
    return data;
  }
  Vector getRow(int row);
  Vector getCol(int col);
  ConstVector getRow(int row) const;
  ConstVector getCol(int col) const;

  double
  getNormInf() const
  {
    return ConstGeneralMatrix(*this).getNormInf();
  }
  double
  getNorm1() const
  {
    return ConstGeneralMatrix(*this).getNorm1();
  }

  /* place matrix m to the position (i,j) */
  void place(const ConstGeneralMatrix &m, int i, int j);
  void
  place(const GeneralMatrix &m, int i, int j)
  {
    place(ConstGeneralMatrix(m), i, j);
  }

  // this = a·b
  void mult(const ConstGeneralMatrix &a, const ConstGeneralMatrix &b);
  void
  mult(const GeneralMatrix &a, const GeneralMatrix &b)
  {
    mult(ConstGeneralMatrix(a), ConstGeneralMatrix(b));
  }

  // this = this + scalar·a·b
  void multAndAdd(const ConstGeneralMatrix &a, const ConstGeneralMatrix &b,
                  double mult = 1.0);
  void
  multAndAdd(const GeneralMatrix &a, const GeneralMatrix &b,
             double mult = 1.0)
  {
    multAndAdd(ConstGeneralMatrix(a), ConstGeneralMatrix(b), mult);
  }

  // this = this + scalar·a·bᵀ
  void multAndAdd(const ConstGeneralMatrix &a, const ConstGeneralMatrix &b,
                  const std::string &dum, double mult = 1.0);
  void
  multAndAdd(const GeneralMatrix &a, const GeneralMatrix &b,
             const std::string &dum, double mult = 1.0)
  {
    multAndAdd(ConstGeneralMatrix(a), ConstGeneralMatrix(b), dum, mult);
  }

  // this = this + scalar·aᵀ·b
  void multAndAdd(const ConstGeneralMatrix &a, const std::string &dum, const ConstGeneralMatrix &b,
                  double mult = 1.0);
  void
  multAndAdd(const GeneralMatrix &a, const std::string &dum, const GeneralMatrix &b,
             double mult = 1.0)
  {
    multAndAdd(ConstGeneralMatrix(a), dum, ConstGeneralMatrix(b), mult);
  }

  // this = this + scalar·aᵀ·bᵀ
  void multAndAdd(const ConstGeneralMatrix &a, const std::string &dum1,
                  const ConstGeneralMatrix &b, const std::string &dum2, double mult = 1.0);
  void
  multAndAdd(const GeneralMatrix &a, const std::string &dum1,
             const GeneralMatrix &b, const std::string &dum2, double mult = 1.0)
  {
    multAndAdd(ConstGeneralMatrix(a), dum1, ConstGeneralMatrix(b), dum2, mult);
  }

  // this = this + scalar·a·aᵀ
  void addOuter(const ConstVector &a, double mult = 1.0);
  void
  addOuter(const Vector &a, double mult = 1.0)
  {
    addOuter(ConstVector(a), mult);
  }

  // this = this·m
  void multRight(const ConstGeneralMatrix &m);
  void
  multRight(const GeneralMatrix &m)
  {
    multRight(ConstGeneralMatrix(m));
  }

  // this = m·this
  void multLeft(const ConstGeneralMatrix &m);
  void
  multLeft(const GeneralMatrix &m)
  {
    multLeft(ConstGeneralMatrix(m));
  }

  // this = this·mᵀ
  void multRightTrans(const ConstGeneralMatrix &m);
  void
  multRightTrans(const GeneralMatrix &m)
  {
    multRightTrans(ConstGeneralMatrix(m));
  }

  // this = mᵀ·this
  void multLeftTrans(const ConstGeneralMatrix &m);
  void
  multLeftTrans(const GeneralMatrix &m)
  {
    multLeftTrans(ConstGeneralMatrix(m));
  }

  // x = scalar(a)·x + scalar(b)·this·d
  void
  multVec(double a, Vector &x, double b, const ConstVector &d) const
  {
    ConstGeneralMatrix(*this).multVec(a, x, b, d);
  }

  // x = scalar(a)·x + scalar(b)·thisᵀ·d
  void
  multVecTrans(double a, Vector &x, double b, const ConstVector &d) const
  {
    ConstGeneralMatrix(*this).multVecTrans(a, x, b, d);
  }

  // x = x + this·d
  void
  multaVec(Vector &x, const ConstVector &d) const
  {
    ConstGeneralMatrix(*this).multaVec(x, d);
  }

  // x = x + thisᵀ·d */
  void
  multaVecTrans(Vector &x, const ConstVector &d) const
  {
    ConstGeneralMatrix(*this).multaVecTrans(x, d);
  }

  // x = x - this·d
  void
  multsVec(Vector &x, const ConstVector &d) const
  {
    ConstGeneralMatrix(*this).multsVec(x, d);
  }

  // x = x - thisᵀ·d
  void
  multsVecTrans(Vector &x, const ConstVector &d) const
  {
    ConstGeneralMatrix(*this).multsVecTrans(x, d);
  }

  // this = zero
  void zeros();

  // this = unit (on main diagonal)
  void unit();

  // this = NaN
  void nans();

  // this = ∞
  void infs();

  // this = scalar·this
  void mult(double a);

  // this = this + scalar·m
  void add(double a, const ConstGeneralMatrix &m);
  void
  add(double a, const GeneralMatrix &m)
  {
    add(a, ConstGeneralMatrix(m));
  }

  // this = this + scalar·mᵀ
  void add(double a, const ConstGeneralMatrix &m, const std::string &dum);
  void
  add(double a, const GeneralMatrix &m, const std::string &dum)
  {
    add(a, ConstGeneralMatrix(m), dum);
  }

  bool
  isFinite() const
  {
    return (ConstGeneralMatrix(*this)).isFinite();
  }

  bool
  isZero() const
  {
    return (ConstGeneralMatrix(*this)).isZero();
  }

  virtual void
  print() const
  {
    ConstGeneralMatrix(*this).print();
  }
private:
  void copy(const ConstGeneralMatrix &m, int ioff = 0, int joff = 0);
  void
  copy(const GeneralMatrix &m, int ioff = 0, int joff = 0)
  {
    copy(ConstGeneralMatrix(m), ioff, joff);
  }

  void gemm(const std::string &transa, const ConstGeneralMatrix &a,
            const std::string &transb, const ConstGeneralMatrix &b,
            double alpha, double beta);
  void
  gemm(const std::string &transa, const GeneralMatrix &a,
       const std::string &transb, const GeneralMatrix &b,
       double alpha, double beta)
  {
    gemm(transa, ConstGeneralMatrix(a), transb, ConstGeneralMatrix(b),
         alpha, beta);
  }

  /* this = this * op(m) (without whole copy of this) */
  void gemm_partial_right(const std::string &trans, const ConstGeneralMatrix &m,
                          double alpha, double beta);
  void
  gemm_partial_right(const std::string &trans, const GeneralMatrix &m,
                     double alpha, double beta)
  {
    gemm_partial_right(trans, ConstGeneralMatrix(m), alpha, beta);
  }

  // this = op(m)·this (without whole copy of ‘this’)
  void gemm_partial_left(const std::string &trans, const ConstGeneralMatrix &m,
                         double alpha, double beta);
  void
  gemm_partial_left(const std::string &trans, const GeneralMatrix &m,
                    double alpha, double beta)
  {
    gemm_partial_left(trans, ConstGeneralMatrix(m), alpha, beta);
  }

  /* number of rows/columns for copy used in gemm_partial_* */
  static constexpr int md_length = 23;
};

// Computes a·b
inline GeneralMatrix
operator*(const ConstGeneralMatrix &a, const ConstGeneralMatrix &b)
{
  GeneralMatrix m(a.rows, b.cols);
  m.gemm("N", a, "N", b, 1.0, 0.0);
  return m;
}

// Computes a·bᵀ
template<class T>
GeneralMatrix
operator*(const ConstGeneralMatrix &a, const TransposedMatrix<T> &b)
{
  GeneralMatrix m(a.rows, b.orig.rows);
  m.gemm("N", a, "T", b.orig, 1.0, 0.0);
  return m;
}

// Computes aᵀ·b
template<class T>
GeneralMatrix
operator*(const TransposedMatrix<T> &a, const ConstGeneralMatrix &b)
{
  GeneralMatrix m(a.orig.cols, b.cols);
  m.gemm("T", a.orig, "N", b, 1.0, 0.0);
  return m;
}

// Computes aᵀ·bᵀ
template<class T1, class T2>
GeneralMatrix
operator*(const TransposedMatrix<T1> &a, const TransposedMatrix<T2> &b)
{
  GeneralMatrix m(a.orig.cols, b.orig.rows);
  m.gemm("T", a.orig, "T", b.orig, 1.0, 0.0);
  return m;
}

class SVDDecomp
{
protected:
  // Minimum of number of rows and columns of the decomposed matrix
  const int minmn;
  // Singular values
  Vector sigma;
  // Orthogonal matrix U
  GeneralMatrix U;
  // Orthogonal matrix Vᵀ
  GeneralMatrix VT;
  // Convered flag
  bool conv;
public:
  SVDDecomp(const GeneralMatrix &A)
    : minmn(std::min<int>(A.nrows(), A.ncols())),
      sigma(minmn),
      U(A.nrows(), A.nrows()),
      VT(A.ncols(), A.ncols()),
      conv(false)
  {
    construct(A);
  }
  const GeneralMatrix &
  getU() const
  {
    return U;
  }
  const GeneralMatrix &
  getVT() const
  {
    return VT;
  }
  void solve(const ConstGeneralMatrix &B, GeneralMatrix &X) const;
  void
  solve(const ConstVector &b, Vector &x) const
  {
    GeneralMatrix xmat(x, x.length(), 1);
    solve(ConstGeneralMatrix(b, b.length(), 1), xmat);
  }
private:
  void construct(const GeneralMatrix &A);
};

#endif /* GENERAL_MATRIX_H */