File: Vector.hh

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (254 lines) | stat: -rw-r--r-- 6,635 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/*
 * Copyright © 2004-2011 Ondra Kamenik
 * Copyright © 2019 Dynare Team
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef VECTOR_H
#define VECTOR_H

/* NOTE: Vector and ConstVector have not common super class in order
   to avoid running virtual method invokation mechanism. Some
   members, and methods are thus duplicated */

#include <complex>
#include <utility>

#if defined(MATLAB_MEX_FILE) || defined(OCTAVE_MEX_FILE)
# include <dynmex.h>
#endif

class GeneralMatrix;
class ConstVector;

class Vector
{
  friend class ConstVector;
protected:
  int len{0};
  int s{1}; // stride (also called “skip” in some places)
  double *data;
  bool destroy{true};
public:
  Vector() : data{nullptr}, destroy{false}
  {
  }
  Vector(int l) : len{l}, data{new double[l]}
  {
  }
  Vector(Vector &v) : len{v.len}, s{v.s}, data{v.data}, destroy{false}
  {
  }
  Vector(const Vector &v);
  Vector(Vector &&v) : len{std::exchange(v.len, 0)}, s{v.s},
                       data{std::exchange(v.data, nullptr)},
                       destroy{std::exchange(v.destroy, false)}
  {
  }
  // We don't want implict conversion from ConstVector, since it’s expensive
  explicit Vector(const ConstVector &v);
  Vector(double *d, int l)
    : len(l), data{d}, destroy{false}
  {
  }
  Vector(Vector &v, int off_arg, int l);
  Vector(const Vector &v, int off_arg, int l);
  Vector(Vector &v, int off_arg, int skip, int l);
  Vector(const Vector &v, int off_arg, int skip, int l);
#if defined(MATLAB_MEX_FILE) || defined(OCTAVE_MEX_FILE)
  explicit Vector(mxArray *p);
#endif
  Vector &operator=(const Vector &v);
  Vector &operator=(Vector &&v);
  Vector &operator=(const ConstVector &v);
  double &
  operator[](int i)
  {
    return data[s*i];
  }
  const double &
  operator[](int i) const
  {
    return data[s*i];
  }
  const double *
  base() const
  {
    return data;
  }
  double *
  base()
  {
    return data;
  }
  int
  length() const
  {
    return len;
  }
  int
  skip() const
  {
    return s;
  }

  // Exact equality.
  bool operator==(const Vector &y) const;
  bool operator!=(const Vector &y) const;
  // Lexicographic ordering.
  bool operator<(const Vector &y) const;
  bool operator<=(const Vector &y) const;
  bool operator>(const Vector &y) const;
  bool operator>=(const Vector &y) const;

  virtual ~Vector()
  {
    if (destroy)
      delete[] data;
  }
  void zeros();
  void nans();
  void infs();
  void rotatePair(double alpha, double beta1, double beta2, int i);
  // Computes this = this + r·v
  void add(double r, const Vector &v);
  // Computes this = this + r·v
  void add(double r, const ConstVector &v);
  // Computes this = this + z·v (where this and v are intepreted as complex vectors)
  void addComplex(const std::complex<double> &z, const Vector &v);
  // Computes this = this + z·v (where this and v are intepreted as complex vectors)
  void addComplex(const std::complex<double> &z, const ConstVector &v);
  void mult(double r);
  double getNorm() const;
  double getMax() const;
  double getNorm1() const;
  double dot(const Vector &y) const;
  bool isFinite() const;
  void print() const;

  /* Computes:
     ⎛x₁⎞ ⎛ α −β₁⎞   ⎛b₁⎞
     ⎢  ⎥=⎢      ⎥⊗I·⎢  ⎥
     ⎝x₂⎠ ⎝−β₂ α ⎠   ⎝b₂⎠
  */
  static void mult2(double alpha, double beta1, double beta2,
                    Vector &x1, Vector &x2,
                    const Vector &b1, const Vector &b2);
  /* Computes:
     ⎛x₁⎞ ⎛x₁⎞ ⎛ α −β₁⎞   ⎛b₁⎞
     ⎢  ⎥=⎢  ⎥+⎢      ⎥⊗I·⎢  ⎥
     ⎝x₂⎠ ⎝x₂⎠ ⎝−β₂ α ⎠   ⎝b₂⎠
  */
  static void mult2a(double alpha, double beta1, double beta2,
                     Vector &x1, Vector &x2,
                     const Vector &b1, const Vector &b2);
  /* Computes:
     ⎛x₁⎞ ⎛x₁⎞ ⎛ α −β₁⎞   ⎛b₁⎞
     ⎢  ⎥=⎢  ⎥−⎢      ⎥⊗I·⎢  ⎥
     ⎝x₂⎠ ⎝x₂⎠ ⎝−β₂ α ⎠   ⎝b₂⎠
  */
  static void
  mult2s(double alpha, double beta1, double beta2,
         Vector &x1, Vector &x2,
         const Vector &b1, const Vector &b2)
  {
    mult2a(-alpha, -beta1, -beta2, x1, x2, b1, b2);
  }
private:
  void copy(const double *d, int inc);
};

class ConstGeneralMatrix;

class ConstVector
{
  friend class Vector;
protected:
  int len;
  int s{1}; // stride (also called “skip” in some places)
  const double *data;
public:
  // Implicit conversion from Vector is ok, since it’s cheap
  ConstVector(const Vector &v);
  ConstVector(const ConstVector &v) = default;
  ConstVector(ConstVector &&v) = default;
  ConstVector(const double *d, int l) : len{l}, data{d}
  {
  }
  ConstVector(const ConstVector &v, int off_arg, int l);
  ConstVector(const ConstVector &v, int off_arg, int skip, int l);
  ConstVector(const double *d, int skip, int l);
#if defined(MATLAB_MEX_FILE) || defined(OCTAVE_MEX_FILE)
  explicit ConstVector(const mxArray *p);
#endif
  virtual ~ConstVector() = default;
  ConstVector &operator=(const ConstVector &v) = delete;
  ConstVector &operator=(ConstVector &&v) = delete;
  const double &
  operator[](int i) const
  {
    return data[s*i];
  }
  const double *
  base() const
  {
    return data;
  }
  int
  length() const
  {
    return len;
  }
  int
  skip() const
  {
    return s;
  }
  // Exact equality
  bool operator==(const ConstVector &y) const;
  bool
  operator!=(const ConstVector &y) const
  {
    return !operator==(y);
  }
  // Lexicographic ordering
  bool operator<(const ConstVector &y) const;
  bool
  operator<=(const ConstVector &y) const
  {
    return operator<(y) || operator==(y);
  }
  bool
  operator>(const ConstVector &y) const
  {
    return !operator<=(y);
  }
  bool
  operator>=(const ConstVector &y) const
  {
    return !operator<(y);
  }

  double getNorm() const;
  double getMax() const;
  double getNorm1() const;
  double dot(const ConstVector &y) const;
  bool isFinite() const;
  void print() const;
};

#endif /* VECTOR_H */