1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
function write(DynareModel)
% Writes the nonlinear problem to be solved for computing the growth
% rates and levels along the Balanced Growth Path. Note that for
% the variables growing along the BGP, the identified levels are
% meaningless, only the relative levels of the growing variables
% sharing the same trend(s) are relevant.
%
% INPUTS
% - DynareModel [struct] Dynare generated stucture describing the model (M_).
%
% OUTPUTS
% None
%
% REMARKS
% - The trends are assumed to be multiplicative.
% Copyright (C) 2019 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
if DynareModel.maximum_lag && ~DynareModel.maximum_lead
i0 = transpose(DynareModel.lead_lag_incidence(1,:)); % Indices of the lagged variables.
i1 = transpose(DynareModel.lead_lag_incidence(2,:)); % Indices of the current variables.
i2 = []; % Indices of the leaded variables.
elseif DynareModel.maximum_lag && DynareModel.maximum_lead
i0 = transpose(DynareModel.lead_lag_incidence(1,:)); % Indices of the lagged variables.
i1 = transpose(DynareModel.lead_lag_incidence(2,:)); % Indices of the current variables.
i2 = transpose(DynareModel.lead_lag_incidence(3,:)); % Indices of the leaded variables.
elseif ~DynareModel.maximum_lag && DynareModel.maximum_lead
i0 = []; % Indices of the lagged variables.
i1 = transpose(DynareModel.lead_lag_incidence(1,:)); % Indices of the current variables.
i2 = transpose(DynareModel.lead_lag_incidence(2,:)); % Indices of the leaded variables.
else
error('The model is static. The BGP is trivial.')
end
n0 = length(find(i0)); % Number of lagged variables.
n1 = length(find(i1)); % Number of current variables.
n2 = length(find(i2)); % Number of leaded variables.
purely_backward_model = logical(n0 && n1 && ~n2);
purely_forward_model = logical(~n0 && n1 && n2);
if purely_backward_model
I0 = i0;
I1 = i1;
I2 = [];
elseif purely_forward_model
I0 = i1;
I1 = i2;
I2 = [];
else
% Model has both leads and lags.
I0 = i0;
I1 = i1;
I2 = i2;
end
% Create function in mod namespace.
fid = fopen(sprintf('+%s/bgpfun.m', DynareModel.fname), 'w');
% Write header.
fprintf(fid, 'function [F, JAC] = bgpfun(z)\n\n');
fprintf(fid, '%% This file has been generated by dynare (%s).\n\n', datestr(now));
% The function admits a unique vector as input argument. The first
% half of the elements are for the levels of the endogenous
% variables, the second half for the growth factors.
fprintf(fid, 'y = z(1:%u);\n\n', DynareModel.endo_nbr);
fprintf(fid, 'g = z(%u:%u);\n', DynareModel.endo_nbr+1, 2*DynareModel.endo_nbr);
% Define the point where the dynamic model is to be evaluated.
fprintf(fid, 'Y = zeros(%u, 1);\n', 2*(n0+n1+n2));
for i=1:length(I0) % period t equations, lagged variables.
if I0(i)
fprintf(fid, 'Y(%u) = y(%u);\n', I0(i), i);
end
end
for i=1:length(I1) % period t equations, current variables.
if I1(i)
fprintf(fid, 'Y(%u) = y(%u)*g(%u);\n', I1(i), i, i);
end
end
for i=1:length(I2) % period t equations, leaded variables.
if I2(i)
fprintf(fid, 'Y(%u) = y(%u)*g(%u)*g(%u);\n', I2(i), i, i, i);
end
end
for i=1:length(I0) % period t+1 equations lagged variables.
if I0(i)
fprintf(fid, 'Y(%u) = y(%u)*g(%u);\n', n0+n1+n2+I0(i), i, i);
end
end
for i=1:length(I1) % period t+1 equations current variables.
if I1(i)
fprintf(fid, 'Y(%u) = y(%u)*g(%u)*g(%u);\n', n0+n1+n2+I1(i), i, i, i);
end
end
for i=1:length(I2) % period t+1 equations leaded variables.
if I2(i)
fprintf(fid, 'Y(%u) = y(%u)*g(%u)*g(%u)*g(%u);\n', n0+n1+n2+I2(i), i, i, i, i);
end
end
fprintf(fid, '\n');
% Define the vector of parameters.
fprintf(fid, 'p = zeros(%u, 1);\n', DynareModel.param_nbr);
for i = 1:DynareModel.param_nbr
fprintf(fid, 'p(%u) = %16.12f;\n', i, DynareModel.params(i));
end
fprintf(fid, '\n');
% Initialize the vector holding the residuals over the two periods.
fprintf(fid, 'F = NaN(%u, 1);\n', 2*DynareModel.endo_nbr);
% Set vector of exogenous variables to 0.
fprintf(fid, 'x = zeros(1, %u);\n\n', DynareModel.exo_nbr);
% Evaluate the residuals and jacobian of the dynamic model in periods t and t+1.
fprintf(fid, 'if nargout>1\n');
fprintf(fid, ' J = zeros(%u, %u);\n', 2*DynareModel.endo_nbr, n0+n1+n2+DynareModel.endo_nbr);
fprintf(fid, ' [F(1:%u), tmp] = %s.dynamic(Y(1:%u), x, p, y, 1);\n', DynareModel.endo_nbr, DynareModel.fname, n0+n1+n2);
fprintf(fid, ' J(1:%u,1:%u) = tmp(:,1:%u);\n', DynareModel.endo_nbr, n0+n1+n2, n0+n1+n2);
fprintf(fid, ' [F(%u:%u), tmp] = %s.dynamic(Y(1+%u:%u), x, p, y, 1);\n', DynareModel.endo_nbr+1, 2*DynareModel.endo_nbr, DynareModel.fname, n0+n1+n2, 2*(n0+n1+n2));
fprintf(fid, ' J(%u:%u,1:%u) = tmp(:,1:%u);\n', DynareModel.endo_nbr+1, 2*DynareModel.endo_nbr, n0+n1+n2, n0+n1+n2);
fprintf(fid, 'else\n');
fprintf(fid, ' F(1:%u) = %s.dynamic(Y(1:%u), x, p, y, 1);\n', DynareModel.endo_nbr, DynareModel.fname, n0+n1+n2);
fprintf(fid, ' F(%u:%u) = %s.dynamic(Y(1+%u:%u), x, p, y, 1);\n', DynareModel.endo_nbr+1, 2*DynareModel.endo_nbr, DynareModel.fname, n0+n1+n2, 2*(n0+n1+n2));
fprintf(fid, 'end\n\n');
% Compute the jacobian if required.
fprintf(fid, 'if nargout>1\n');
fprintf(fid, ' JAC = zeros(%u,%u);\n', 2*DynareModel.endo_nbr, 2*DynareModel.endo_nbr);
% Compute the derivatives of the first block of equations (period t)
% with respect to the endogenous variables.
if purely_backward_model || purely_forward_model
for i=1:DynareModel.eq_nbr
for j=1:DynareModel.endo_nbr
if I1(j)
if I0(j)
fprintf(fid, ' JAC(%u,%u) = J(%u,%u)+J(%u,%u)*g(%u);\n', i, j, i, I0(j), i, I1(j), j);
else
fprintf(fid, ' JAC(%u,%u) = J(%u,%u)*g(%u);\n', i, j, i, I1(j), j);
end
else
if I0(j)
fprintf(fid, ' JAC(%u,%u) = J(%u,%u);\n', i, j, i, I0(j));
end
end
end
end
else
for i=1:DynareModel.eq_nbr
for j=1:DynareModel.endo_nbr
if I2(j)
if I1(j)
if I0(j)
fprintf(fid, ' JAC(%u,%u) = J(%u,%u)+J(%u,%u)*g(%u)+J(%u,%u)*g(%u)*g(%u);\n', i, j, i, I0(j), i, I1(j), j, i, I2(j), j, j);
else
fprintf(fid, ' JAC(%u,%u) = J(%u,%u)*g(%u)+J(%u,%u)*g(%u)*g(%u);\n', i, j, i, I1(j), j, i, I2(j), j, j);
end
else
if I0(j)
fprintf(fid, ' JAC(%u,%u) = J(%u,%u)+J(%u,%u)*g(%u)*g(%u);\n', i, j, i, I0(j), i, I2(j), j, j);
else
fprintf(fid, ' JAC(%u,%u) = J(%u,%u)*g(%u)*g(%u);\n', i, j, i, I2(j), j, j);
end
end
else
if I1(j)
if I0(j)
fprintf(fid, ' JAC(%u,%u) = J(%u,%u)+J(%u,%u)*g(%u);\n', i, j, i, I0(j), i, I1(j), j);
else
fprintf(fid, ' JAC(%u,%u) = J(%u,%u)*g(%u);\n', i, j, i, I1(j), j);
end
else
if I0(j)
fprintf(fid, ' JAC(%u,%u) = J(%u,%u);\n', i, j, i, I0(j));
end
end
end
end
end
end
% Compute the derivatives of the second block of equations (period t+1)
% with respect to the endogenous variables.
if purely_backward_model || purely_forward_model
for i=DynareModel.eq_nbr+1:2*DynareModel.eq_nbr
for j=1:DynareModel.endo_nbr
if I1(j)
if I0(j)
fprintf(fid, ' JAC(%u,%u) = J(%u,%u)*g(%u)+J(%u,%u)*g(%u)*g(%u);\n', i, j, i, I0(j), j, i, I1(j), j, j);
else
fprintf(fid, ' JAC(%u,%u) = J(%u,%u)*g(%u)*g(%u);\n', i, j, i, I1(j), j, j);
end
else
if I0(j)
fprintf(fid, ' JAC(%u, %u) = J(%u, %u)*g(%u);\n', i, j, i, I0(j), j);
end
end
end
end
else
for i=DynareModel.eq_nbr+1:2*DynareModel.eq_nbr
for j=1:DynareModel.endo_nbr
if I2(j)
if I1(j)
if I0(j)
fprintf(fid, ' JAC(%u,%u) = J(%u,%u)*g(%u)+J(%u,%u)*g(%u)*g(%u)+J(%u,%u)*g(%u)*g(%u)*g(%u);\n', i, j, i, I0(j), j, i, I1(j), j, j, i, I2(j), j, j, j);
else
fprintf(fid, ' JAC(%u,%u) = J(%u,%u)*g(%u)*g(%u)+J(%u,%u)*g(%u)*g(%u)*g(%u);\n', i, j, i, I1(j), j, j, i, I2(j), j, j, j);
end
else
if I0(j)
fprintf(fid, ' JAC(%u,%u) = J(%u,%u)*g(%u)+J(%u,%u)*g(%u)*g(%u)*g(%u);\n', i, j, i, I0(j), j, i, I2(j), j, j, j);
else
fprintf(fid, ' JAC(%u,%u) = J(%u,%u)*g(%u)*g(%u)*g(%u);\n', i, j, i, I2(j), j, j, j);
end
end
else
if I1(j)
if I0(j)
fprintf(fid, ' JAC(%u,%u) = J(%u,%u)*g(%u)+J(%u,%u)*g(%u)*g(%u);\n', i, j, i, I0(j), j, i, I1(j), j, j);
else
fprintf(fid, ' JAC(%u,%u) = J(%u,%u)*g(%u)*g(%u);\n', i, j, i, I1(j), j, j);
end
else
if I0(j)
fprintf(fid, ' JAC(%u, %u) = J(%u, %u)*g(%u);\n', i, j, i, I0(j), j);
end
end
end
end
end
end
% Compute the derivatives of the first block of equations (period t)
% with respect to the growth factors.
if purely_backward_model || purely_forward_model
for i=1:DynareModel.eq_nbr
for j=1:DynareModel.endo_nbr
if I1(j)
fprintf(fid, ' J(%u,%u) = J(%u,%u)*y(%u);\n', i, n0+n1+n2+j, i, I1(j), j);
end
end
end
else
for i=1:DynareModel.eq_nbr
for j=1:DynareModel.endo_nbr
if I2(j)
if I1(j)
fprintf(fid, ' J(%u,%u) = J(%u,%u)*y(%u)+J(%u,%u)*2*g(%u)*y(%u);\n', i, n0+n1+n2+j, i, I1(j), j, i, I2(j), j, j);
else
fprintf(fid, ' J(%u,%u) = J(%u,%u)*2*g(%u)*y(%u);\n', i, n0+n1+n2+j, i, I2(j), j, j);
end
else
if I1(j)
fprintf(fid, ' J(%u,%u) = J(%u,%u)*y(%u);\n', i, n0+n1+n2+j, i, I1(j), j);
end
end
end
end
end
% Compute the derivatives of the second block of equations (period t+1)
% with respect to the endogenous variables.
if purely_backward_model || purely_forward_model
for i=DynareModel.eq_nbr+1:2*DynareModel.eq_nbr
for j=1:DynareModel.endo_nbr
if I0(j)
fprintf(fid, ' J(%u,%u) = J(%u,%u)+J(%u,%u)*y(%u);\n', i, n0+n1+n2+j, i, n0+n1+n2+j, i, I0(j), j);
end
if I1(j)
fprintf(fid, ' J(%u,%u) = J(%u,%u)+2*J(%u,%u)*y(%u)*g(%u);\n', i, n0+n1+n2+j, i, n0+n1+n2+j, i, I1(j), j, j);
end
end
end
else
for i=DynareModel.eq_nbr+1:2*DynareModel.eq_nbr
for j=1:DynareModel.endo_nbr
if I2(j)
if I1(j)
if I0(j)
fprintf(fid, ' J(%u,%u) = J(%u,%u)*y(%u)+2*J(%u,%u)*y(%u)*g(%u)+3*J(%u,%u)*y(%u)*g(%u)*g(%u);\n', i, n0+n1+n2+j, i, I0(j), j, i, I1(j), j, j, i, I2(j), j, j, j);
else
fprintf(fid, ' J(%u,%u) = 2*J(%u,%u)*y(%u)*g(%u)+3*J(%u,%u)*y(%u)*g(%u)*g(%u);\n', i, n0+n1+n2+j, i, I1(j), j, j, i, I2(j), j, j, j);
end
else
if I0(j)
fprintf(fid, ' J(%u,%u) = J(%u,%u)*y(%u)+3*J(%u,%u)*y(%u)*g(%u)*g(%u);\n', i, n0+n1+n2+j, i, I0(j), j, i, I2(j), j, j, j);
else
fprintf(fid, ' J(%u,%u) = 3*J(%u,%u)*y(%u)*g(%u)*g(%u);\n', i, n0+n1+n2+j, i, I2(j), j, j, j);
end
end
else
if I1(j)
if I0(j)
fprintf(fid, ' J(%u,%u) = J(%u,%u)*y(%u)+2*J(%u,%u)*y(%u)*g(%u);\n', i, n0+n1+n2+j, i, I0(j), j, i, I1(j), j, j);
else
fprintf(fid, ' J(%u,%u) = 2*J(%u,%u)*y(%u)*g(%u);\n', i, n0+n1+n2+j, i, I1(j), j, j);
end
else
if I0(j)
fprintf(fid, ' J(%u,%u) = J(%u,%u)*y(%u);\n', i, n0+n1+n2+j, i, I0(j), j);
end
end
end
end
end
end
fprintf(fid, ' JAC(:,%u:%u) = J(:,%u:%u);\n', DynareModel.endo_nbr+1, 2*DynareModel.endo_nbr, n0+n1+n2+1, n0+n1+n2+DynareModel.endo_nbr);
fprintf(fid,'end\n');
fclose(fid);
|