File: UnivariateSpectralDensity.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (170 lines) | stat: -rw-r--r-- 6,000 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
function [oo_] = UnivariateSpectralDensity(M_,oo_,options_,var_list)
% This function computes the theoretical spectral density of each
% endogenous variable declared in var_list. Results are stored in
% oo_.SpectralDensity and may be plotted. Plots are saved into the
% graphs-folder.
%
% INPUTS
%   M_                  [structure]    Dynare's model structure
%   oo_                 [structure]    Dynare's results structure
%   options_            [structure]    Dynare's options structure
%   var_list            [integer]      Vector of indices for a subset of variables.
%
% OUTPUTS
%   oo_                 [structure]    Dynare's results structure,
%                                       containing the subfield
%                                       SpectralDensity with fields freqs
%                                       and density, which are of size nvar*ngrid.
%

% Adapted from th_autocovariances.m.

% Copyright (C) 2006-2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.


if options_.order > 1
    disp('UnivariateSpectralDensity :: I Cannot compute the theoretical spectral density')
    disp('with a second order approximation of the DSGE model!')
    disp('Please set order = 1. I abort')
    return
end

if isoctave
    warning('off', 'Octave:divide-by-zero')
else
    warning off MATLAB:dividebyzero
end
if nargin<2
    var_list = {};
end
if isempty(var_list)
    var_list = M_.endo_names(1:M_.orig_endo_nbr);
end
nvar = length(var_list);
ivar=zeros(nvar,1);
for i=1:nvar
    i_tmp = strmatch(var_list{i}, M_.endo_names, 'exact');
    if isempty(i_tmp)
        error (['One of the variables specified does not exist']) ;
    else
        ivar(i) = i_tmp;
    end
end

ghx = oo_.dr.ghx;
ghu = oo_.dr.ghu;
nspred = M_.nspred;
nstatic = M_.nstatic;
kstate = oo_.dr.kstate;
order = oo_.dr.order_var;
iv(order) = [1:length(order)];
nx = size(ghx,2);
ikx = [nstatic+1:nstatic+nspred];
k0 = kstate(find(kstate(:,2) <= M_.maximum_lag+1),:);
i0 = find(k0(:,2) == M_.maximum_lag+1);
i00 = i0;
AS = ghx(:,i0);
ghu1 = zeros(nx,M_.exo_nbr);
ghu1(i0,:) = ghu(ikx,:);
for i=M_.maximum_lag:-1:2
    i1 = find(k0(:,2) == i);
    n1 = size(i1,1);
    j1 = zeros(n1,1);
    j2 = j1;
    for k1 = 1:n1
        j1(k1) = find(k0(i00,1)==k0(i1(k1),1));
        j2(k1) = find(k0(i0,1)==k0(i1(k1),1));
    end
    AS(:,j1) = AS(:,j1)+ghx(:,i1);
    i0 = i1;
end

[A,B] = kalman_transition_matrix(oo_.dr,ikx',1:nx,M_.exo_nbr);
[vx, u] =  lyapunov_symm(A,B*M_.Sigma_e*B',options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold,[],options_.debug);
iky = iv(ivar);
if ~isempty(u)
    iky = iky(find(any(abs(ghx(iky,:)*u) < options_.Schur_vec_tol,2)));
    ivar = oo_.dr.order_var(iky);
end

iky = iv(ivar);
aa = ghx(iky,:);
bb = ghu(iky,:);
ngrid = options_.filtered_theoretical_moments_grid; %number of grid points
freqs = (0 : pi/(ngrid-1):pi)'; % grid on which to compute
tpos  = exp( sqrt(-1)*freqs); %positive frequencies
tneg  = exp(-sqrt(-1)*freqs); %negative frequencies
if options_.one_sided_hp_filter
    error('UnivariateSpectralDensity:: spectral density estimate not available with one-sided HP filter')
elseif options_.hp_filter == 0 && ~options_.bandpass.indicator %do not filter
    filter_gain=ones(ngrid,1);
elseif ~(options_.hp_filter == 0 && ~options_.bandpass.indicator) && options_.bandpass.indicator %filter with bandpass
    filter_gain = zeros(1,ngrid);
    lowest_periodicity=options_.bandpass.passband(2);
    highest_periodicity=options_.bandpass.passband(1);
    highest_periodicity=max(2,highest_periodicity); % restrict to upper bound of pi
    filter_gain(freqs>=2*pi/lowest_periodicity & freqs<=2*pi/highest_periodicity)=1;
    filter_gain(freqs<=-2*pi/lowest_periodicity+2*pi & freqs>=-2*pi/highest_periodicity+2*pi)=1;
elseif ~(options_.hp_filter == 0 && ~options_.bandpass.indicator) && ~options_.bandpass.indicator %filter with HP-filter
    lambda = options_.hp_filter;
    filter_gain = 4*lambda*(1 - cos(freqs)).^2 ./ (1 + 4*lambda*(1 - cos(freqs)).^2);
end

mathp_col = NaN(ngrid,length(ivar)^2);
IA = eye(size(A,1));
IE = eye(M_.exo_nbr);
for ig = 1:ngrid
    f_omega  =(1/(2*pi))*( [(IA-A*tneg(ig))\ghu1;IE]...
                           *M_.Sigma_e*[ghu1'/(IA-A'*tpos(ig)) IE]); % state variables
    g_omega = [aa*tneg(ig) bb]*f_omega*[aa'*tpos(ig); bb']; % selected variables
    f_hp = filter_gain(ig)^2*g_omega; % spectral density of selected filtered series
    mathp_col(ig,:) = (f_hp(:))';    % store as matrix row
end

f = zeros(nvar,ngrid);
for i=1:nvar
    f(i,:) = real(mathp_col(:,(i-1)*nvar+i)); %read out spectral density
end

oo_.SpectralDensity.freqs=freqs;
oo_.SpectralDensity.density=f;

if isoctave
    warning('on', 'Octave:divide-by-zero')
else
    warning on MATLAB:dividebyzero
end

if ~options_.nograph
    if ~exist(M_.fname, 'dir')
        mkdir('.',M_.fname);
    end
    if ~exist([M_.fname '/graphs'],'dir')
        mkdir(M_.fname,'graphs');
    end

    for i= 1:nvar
        hh = dyn_figure(options_.nodisplay,'Name',['Spectral Density of ' M_.endo_names{ivar(i)} '.']);
        plot(freqs,f(i,:),'-k','linewidth',2)
        xlabel('0 \leq \omega \leq \pi')
        ylabel('f(\omega)')
        box on
        axis tight
        dyn_saveas(hh,[M_.fname ,filesep,'graphs', filesep, 'SpectralDensity_' M_.endo_names{ivar(i)}],options_.nodisplay,options_.graph_format)
    end
end