File: allVL1.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (200 lines) | stat: -rw-r--r-- 5,923 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
function v = allVL1(n, L1, L1ops, MaxNbSol)
% All integer permutations with sum criteria
%
% function v=allVL1(n, L1); OR
% v=allVL1(n, L1, L1opt);
% v=allVL1(n, L1, L1opt, MaxNbSol);
% 
% INPUT
%    n: length of the vector
%    L1: target L1 norm
%    L1ops: optional string ('==' or '<=' or '<')
%           default value is '=='
%    MaxNbSol: integer, returns at most MaxNbSol permutations.
%    When MaxNbSol is NaN, allVL1 returns the total number of all possible
%    permutations, which is useful to check the feasibility before getting
%    the permutations.
% OUTPUT:
%    v: (m x n) array such as: sum(v,2) == L1,
%       (or <= or < depending on L1ops)                            
%       all elements of v is naturel numbers {0,1,...}
%       v contains all (=m) possible combinations
%       v is sorted by sum (L1 norm), then by dictionnary sorting criteria
%    class(v) is same as class(L1) 
% Algorithm:
%    Recursive
% Remark:
%    allVL1(n,L1-n)+1 for natural numbers defined as {1,2,...}
% Example:
%    This function can be used to generate all orders of all
%    multivariable polynomials of degree p in R^n:
%         Order = allVL1(n, p)
% Author: Bruno Luong (brunoluong@yahoo.com)
% Original, 30/nov/2007
% Version 1.1, 30/apr/2008: Add H1 line as suggested by John D'Errico
%         1.2, 17/may/2009: Possibility to get the number of permutations
%                           alone (set fourth parameter MaxNbSol to NaN)
%         1.3, 16/Sep/2009: Correct bug for number of solution
%         1.4, 18/Dec/2010: + non-recursive engine

% Retrieved from https://www.mathworks.com/matlabcentral/fileexchange/17818-all-permutations-of-integers-with-sum-criteria
% =========================================================================
% Copyright (C) 2007-2010 Bruno Luong <brunoluong@yahoo.com>
% Copyright (C) 2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
% =========================================================================
global MaxCounter;

if nargin<3 || isempty(L1ops)
    L1ops = '==';
end

n = floor(n); % make sure n is integer

if n<1
    v = [];
    return
end

if nargin<4  || isempty(MaxNbSol)
    MaxCounter = Inf;
else
    MaxCounter = MaxNbSol;
end
Counter(0);

switch L1ops
    case {'==' '='},
        if isnan(MaxCounter)
            % return the number of solutions
            v = nchoosek(n+L1-1,L1); % nchoosek(n+L1-1,n-1)
        else
            v = allVL1eq(n, L1);
        end
    case '<=', % call allVL1eq for various sum targets
        if isnan(MaxCounter)
            % return the number of solutions
            %v = nchoosek(n+L1,L1)*factorial(n-L1); BUG <- 16/Sep/2009: 
            v = 0;
            for j=0:L1
                v = v + nchoosek(n+j-1,j);
            end
            % See pascal's 11th identity, the sum doesn't seem to
            % simplify to a fix formula
        else
            v = cell2mat(arrayfun(@(j) allVL1eq(n, j), (0:L1)', ...
                         'UniformOutput', false));
        end
    case '<',
        v = allVL1(n, L1-1, '<=', MaxCounter);
    otherwise
        error('allVL1: unknown L1ops')
end

end % allVL1

%%
function v = allVL1eq(n, L1)

global MaxCounter;

n = feval(class(L1),n);
s = n+L1;
sd = double(n)+double(L1);
notoverflowed = double(s)==sd;
if isinf(MaxCounter) && notoverflowed
    v = allVL1nonrecurs(n, L1);
else
    v = allVL1recurs(n, L1);
end

end % allVL1eq

%% Recursive engine
function v = allVL1recurs(n, L1, head)
% function v=allVL1eq(n, L1);
% INPUT
%    n: length of the vector
%    L1: desired L1 norm
%    head: optional parameter to by concatenate in the first column
%          of the output
% OUTPUT:
%    if head is not defined
%      v: (m x n) array such as sum(v,2)==L1
%         all elements of v is naturel numbers {0,1,...}
%         v contains all (=m) possible combinations
%         v is (dictionnary) sorted
% Algorithm:
%    Recursive

global MaxCounter;

if n==1
    if Counter < MaxCounter
        v = L1;
    else
        v = zeros(0,1,class(L1));
    end
else % recursive call
    v = cell2mat(arrayfun(@(j) allVL1recurs(n-1, L1-j, j), (0:L1)', ...
                 'UniformOutput', false));
end

if nargin>=3 % add a head column
    v = [head+zeros(size(v,1),1,class(head)) v];
end

end % allVL1recurs

%%
function res=Counter(newval)
    persistent counter;
    if nargin>=1
        counter = newval;
        res = counter;
    else
        res = counter;
        counter = counter+1;
    end
end % Counter

%% Non-recursive engine
function v = allVL1nonrecurs(n, L1)
% function v=allVL1eq(n, L1);
% INPUT
%    n: length of the vector
%    L1: desired L1 norm
% OUTPUT:
%    if head is not defined
%      v: (m x n) array such as sum(v,2)==L1
%         all elements of v is naturel numbers {0,1,...}
%         v contains all (=m) possible combinations
%         v is (dictionnary) sorted
% Algorithm:
%    NonRecursive

% Chose (n-1) the splitting points of the array [0:(n+L1)]
s = nchoosek(1:n+L1-1,n-1);
m = size(s,1);

s1 = zeros(m,1,class(L1));
s2 = (n+L1)+s1;

v = diff([s1 s s2],1,2); % m x n
v = v-1;

end % allVL1nonrecurs