File: simul_backward_model.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (99 lines) | stat: -rw-r--r-- 4,313 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
function simulation = simul_backward_model(initialconditions, samplesize, innovations)

% Simulates a stochastic backward looking model (with arbitrary precision).
%
% INPUTS
% - initialconditions   [double]      n*1 vector, initial conditions for the endogenous variables.
% - samplesize          [integer]     scalar, number of periods for the simulation.
% - innovations         [dseries]     innovations to be used for the simulation.
%
% OUTPUTS
% - simulation          [dseries]     Simulated endogenous and exogenous variables.
%
% REMARKS
% [1] The innovations used for the simulation are saved in DynareOutput.exo_simul, and the resulting paths for the endogenous
%     variables are saved in DynareOutput.endo_simul.
% [2] The last input argument is not mandatory. If absent we use random draws and rescale them with the informations provided
%     through the shocks block.
% [3] If the first input argument is empty, the endogenous variables are initialized with 0, or if available with the informations
%     provided thrtough the histval block.

% Copyright (C) 2012-2019 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global options_ M_ oo_

if M_.maximum_lead
    error('Model defined in %s.mod is not backward or static.', M_.fname)
end

if ~M_.maximum_lag
    dprintf('Model defined in %s.mod is static. Use simul_static_model instead.', M_.fname)
    simul_static_model(samplesize, innovations);
    return
end

if nargin<3
    Innovations = [];
else
    if isdseries(innovations)
        if isdseries(initialconditions)
            if isequal(innovations.dates(1)-1, initialconditions.dates(end))
                if innovations.nobs<samplesize
                    error('Time span in third argument is too short (should not be less than %s, the value of the second argument)', num2str(samplesize))
                end
                % Set array holding innovations values.
                Innovations = zeros(samplesize, M_.exo_nbr);
                exonames = M_.exo_names;
                for i=1:M_.exo_nbr
                    if ismember(exonames{i}, innovations.name)
                        Innovations(:,i) = innovations{exonames{i}}.data(1:samplesize);
                    else
                        dprintf('Exogenous variable %s is not available in third argument, default value is zero.', exonames{i})
                    end
                end
            else
                error('Time spans in first and third arguments should be contiguous!')
            end
        else
            if isempty(initialconditions)
                if innovations.nobs<samplesize
                    error('Time span in third argument is too short (should not be less than %s, the value of the second argument)', num2str(samplesize))
                end
                Innovations = zeros(samplesize, M_.exo_nbr);
                exonames = M_.exo_names;
                for i=1:M_.exo_nbr
                    if ismember(exonames{i}, innovations.name)
                        Innovations(:,i) = innovations{exonames{i}}.data(1:samplesize);
                    else
                        dprintf('Exogenous variable %s is not available in third argument, default value is zero.', exonames{i})
                    end
                end
            else
                error('First input must be an empty array!')
            end
        end
    else
        error('Third argument must be a dseries object!')
    end
end

if options_.linear
    simulation = simul_backward_linear_model(initialconditions, samplesize, options_, M_, oo_, Innovations);
else
    simulation = simul_backward_nonlinear_model(initialconditions, samplesize, options_, M_, oo_, Innovations);
end