1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
function [initialconditions, samplesize, innovations, DynareOptions, DynareModel, DynareOutput, endonames, exonames, nx, ny1, iy1, jdx, model_dynamic, y] = ...
simul_backward_model_init(initialconditions, samplesize, DynareOptions, DynareModel, DynareOutput, innovations)
% Initialization of the routines simulating backward models.
% Copyright (C) 2017-2019 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% Test if the model is backward.
if DynareModel.maximum_lead
error('simul_backward_nonlinear_model:: The specified model is not backward looking!')
end
% Test if the first argument is a dseries object.
if ~(isdseries(initialconditions) || isempty(initialconditions))
error('First input argument must be a dseries object or an empty array!')
end
% If initialconditions is empty instantiates a dseries object with the informations available in DynareModel.endo_histval.
if isempty(initialconditions)
yinitdata = zeros(DynareModel.orig_endo_nbr, DynareModel.orig_maximum_lag);
yinitdata(:,1) = DynareModel.endo_histval(1:DynareModel.orig_endo_nbr);
xinitdata = zeros(DynareModel.exo_nbr, DynareModel.orig_maximum_lag);
if DynareModel.orig_maximum_endo_lag>1
for i = 1:length(DynareModel.aux_vars)
if DynareModel.aux_vars(i).type==1
yinitdata(DynareModel.aux_vars(i).orig_index, abs(DynareModel.aux_vars(i).orig_lead_lag)+1) = ...
DynareModel.endo_histval(DynareModel.orig_endo_nbr+i);
end
end
yinitdata = flip(yinitdata, 2);
end
if DynareModel.orig_maximum_exo_lag>0
for i = 1:length(DynareModel.aux_vars)
if DynareModel.aux_vars(i).type==3
xinitdata(DynareModel.aux_vars(i).orig_index, abs(DynareModel.aux_vars(i).orig_lead_lag)+1) = ...
DynareModel.endo_histval(DynareModel.orig_endo_nbr+i);
end
end
xinitdata = flip(xinitdata, 2);
end
initialconditions = dseries([transpose(yinitdata) transpose(xinitdata)], '1Y', ...
vertcat(DynareModel.endo_names(1:DynareModel.orig_endo_nbr), DynareModel.exo_names));
end
[initialconditions, info] = checkdatabase(initialconditions, DynareModel, false, true);
% Test if the first argument contains all the lagged endogenous variables
endonames = DynareModel.endo_names;
missingendogenousvariables = setdiff(endonames, initialconditions.name);
endolags = get_lags_on_endogenous_variables(DynareModel);
endolags_ = endolags(find(endolags));
endowithlagnames = endonames(find(endolags));
if ~isempty(missingendogenousvariables)
missingendogenousvariables = setdiff(endowithlagnames, initialconditions.name);
missingendogenouslaggedvariables = intersect(endowithlagnames, missingendogenousvariables);
if ~isempty(missingendogenouslaggedvariables)
disp('You have to initialize the following endogenous variables:')
msg = sprintf('%s\n', missingendogenouslaggedvariables{1:end-1});
msg = sprintf('%s%s', msg, missingendogenouslaggedvariables{end});
disp(msg)
skipline()
error('Please fix the dseries object used for setting the initial conditions!')
end
end
% Test if we have enough periods in the database.
maxlag = abs(min(endolags));
if maxlag>initialconditions.nobs
error('The dseries object provided as first input argument should at least have %s periods!', num2str(maxlag))
end
missinginitialcondition = false;
for i = 1:length(endowithlagnames)
lags = abs(endolags_(i));
variable = initialconditions{endowithlagnames{i}};
nanvalues = isnan(variable.data);
if any(nanvalues(end-(lags-1):end))
missinginitialcondition = true;
for j=variable.nobs:-1:variable.nobs-(lags-1)
if isnan(variable.data(j))
dprintf('Variable %s should not have a NaN value in period %s.', endowithlagnames{i}, date2string(variable.dates(j)))
end
end
end
end
if missinginitialcondition
skipline()
error('Please fix the dseries object used for setting the initial conditions!')
end
% If the model has lags on the exogenous variables, test if we have corresponding initial conditions.
exonames = DynareModel.exo_names;
missingexogenousvariables = setdiff(exonames, initialconditions.name);
exolags = get_lags_on_exogenous_variables(DynareModel);
exolags_ = exolags(find(exolags));
exowithlagnames = exonames(find(exolags));
if ~isempty(missingexogenousvariables)
missingexogenousvariables = setdiff(exowithlagnames, initialconditions.name);
missingexogenouslaggedvariables = intersect(exowithlagnames, missingexogenousvariables);
if ~isempty(missingexogenouslaggedvariables)
disp('You have to initialize the following exogenous variables:')
msg = sprintf('%s\n', missingexogenouslaggedvariables{1:end-1});
msg = sprintf('%s%s', msg, missingexogenouslaggedvariables{end});
disp(msg)
skipline()
error('Please fix the dseries object used for setting the initial conditions!')
end
end
% Test if we have enough periods in the database.
maxlag = abs(min(exolags));
if maxlag>initialconditions.nobs
error('The dseries object provided as first input argument should at least have %s periods!', num2str(maxlag))
end
missinginitialcondition = false;
for i = 1:length(exowithlagnames)
lags = abs(exolags_(i));
variable = initialconditions{exowithlagnames{i}};
nanvalues = isnan(variable.data);
if any(nanvalues(end-(lags-1):end))
missinginitialcondition = true;
for j=variable.nobs:-1:variable.nobs-(lags-1)
if isnan(variable.data(j))
dprintf('Variable %s should not have a NaN value in period %s.', exowithlagnames{i}, date2string(variable.dates(j)))
end
end
end
end
if missinginitialcondition
skipline()
error('Please fix the dseries object used for setting the initial conditions!')
end
if nargin<6 || isempty(innovations)
% Set the covariance matrix of the structural innovations.
variances = diag(DynareModel.Sigma_e);
number_of_shocks = length(DynareModel.Sigma_e);
positive_var_indx = find(variances>0);
effective_number_of_shocks = length(positive_var_indx);
covariance_matrix = DynareModel.Sigma_e(positive_var_indx,positive_var_indx);
covariance_matrix_upper_cholesky = chol(covariance_matrix);
% Set seed to its default state.
if DynareOptions.bnlms.set_dynare_seed_to_default
set_dynare_seed('default');
end
% Simulate structural innovations.
switch DynareOptions.bnlms.innovation_distribution
case 'gaussian'
DynareOutput.bnlms.shocks = randn(samplesize,effective_number_of_shocks)*covariance_matrix_upper_cholesky;
otherwise
error(['simul_backward_nonlinear_model:: ' DynareOption.bnlms.innovation_distribution ' distribution for the structural innovations is not (yet) implemented!'])
end
% Put the simulated innovations in DynareOutput.exo_simul.
DynareOutput.exo_simul = zeros(samplesize,number_of_shocks);
DynareOutput.exo_simul(:,positive_var_indx) = DynareOutput.bnlms.shocks;
innovations = DynareOutput.exo_simul;
else
DynareOutput.exo_simul = innovations; % innovations
end
% Initialization of the returned simulations.
DynareOutput.endo_simul = NaN(DynareModel.endo_nbr, samplesize+initialconditions.nobs);
for i=1:length(endonames)
if ismember(endonames{i}, initialconditions.name)
DynareOutput.endo_simul(i,1:initialconditions.nobs) = transpose(initialconditions{endonames{i}}.data);
end
end
% Initialization of the array for the exogenous variables.
DynareOutput.exo_simul = [NaN(initialconditions.nobs, DynareModel.exo_nbr); DynareOutput.exo_simul ];
for i=1:length(exonames)
if ismember(exonames{i}, initialconditions.name)
DynareOutput.exo_simul(1:initialconditions.nobs, i) = initialconditions{exonames{i}}.data;
end
end
if nargout>8
nx = size(DynareOutput.exo_simul,2);
ny0 = nnz(DynareModel.lead_lag_incidence(2,:));
ny1 = nnz(DynareModel.lead_lag_incidence(1,:));
iy1 = find(DynareModel.lead_lag_incidence(1,:)>0);
idx = 1:DynareModel.endo_nbr;
jdx = idx+ny1;
% Get the name of the dynamic model routine.
model_dynamic = str2func([DynareModel.fname,'.dynamic']);
% initialization of vector y.
y = NaN(length(idx)+ny1,1);
end
|