File: simul_backward_model_init.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (203 lines) | stat: -rw-r--r-- 9,035 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
function [initialconditions, samplesize, innovations, DynareOptions, DynareModel, DynareOutput, endonames, exonames, nx, ny1, iy1, jdx, model_dynamic, y] = ...
    simul_backward_model_init(initialconditions, samplesize, DynareOptions, DynareModel, DynareOutput, innovations)

% Initialization of the routines simulating backward models.

% Copyright (C) 2017-2019 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

% Test if the model is backward.
if DynareModel.maximum_lead
    error('simul_backward_nonlinear_model:: The specified model is not backward looking!')
end

% Test if the first argument is a dseries object.
if ~(isdseries(initialconditions) || isempty(initialconditions))
    error('First input argument must be a dseries object or an empty array!')
end

% If initialconditions is empty instantiates a dseries object with the informations available in DynareModel.endo_histval.
if isempty(initialconditions)
    yinitdata = zeros(DynareModel.orig_endo_nbr, DynareModel.orig_maximum_lag);
    yinitdata(:,1) = DynareModel.endo_histval(1:DynareModel.orig_endo_nbr);
    xinitdata = zeros(DynareModel.exo_nbr, DynareModel.orig_maximum_lag);
    if DynareModel.orig_maximum_endo_lag>1
        for i = 1:length(DynareModel.aux_vars)
            if DynareModel.aux_vars(i).type==1
                yinitdata(DynareModel.aux_vars(i).orig_index, abs(DynareModel.aux_vars(i).orig_lead_lag)+1) = ...
                    DynareModel.endo_histval(DynareModel.orig_endo_nbr+i);
            end
        end
        yinitdata = flip(yinitdata, 2);
    end
    if DynareModel.orig_maximum_exo_lag>0
        for i = 1:length(DynareModel.aux_vars)
            if DynareModel.aux_vars(i).type==3
                xinitdata(DynareModel.aux_vars(i).orig_index, abs(DynareModel.aux_vars(i).orig_lead_lag)+1) = ...
                    DynareModel.endo_histval(DynareModel.orig_endo_nbr+i);
            end
        end
        xinitdata = flip(xinitdata, 2);
    end
    initialconditions = dseries([transpose(yinitdata) transpose(xinitdata)], '1Y', ...
                                vertcat(DynareModel.endo_names(1:DynareModel.orig_endo_nbr), DynareModel.exo_names));
end

[initialconditions, info] = checkdatabase(initialconditions, DynareModel, false, true);

% Test if the first argument contains all the lagged endogenous variables
endonames = DynareModel.endo_names;
missingendogenousvariables = setdiff(endonames, initialconditions.name);
endolags = get_lags_on_endogenous_variables(DynareModel);
endolags_ = endolags(find(endolags));
endowithlagnames = endonames(find(endolags));
if ~isempty(missingendogenousvariables)
    missingendogenousvariables = setdiff(endowithlagnames, initialconditions.name);
    missingendogenouslaggedvariables = intersect(endowithlagnames, missingendogenousvariables);
    if ~isempty(missingendogenouslaggedvariables)
        disp('You have to initialize the following endogenous variables:')
        msg = sprintf('%s\n', missingendogenouslaggedvariables{1:end-1});
        msg = sprintf('%s%s', msg, missingendogenouslaggedvariables{end});
        disp(msg)
        skipline()
        error('Please fix the dseries object used for setting the initial conditions!')
    end
end

% Test if we have enough periods in the database.
maxlag = abs(min(endolags));
if maxlag>initialconditions.nobs
    error('The dseries object provided as first input argument should at least have %s periods!', num2str(maxlag))
end
missinginitialcondition = false;
for i = 1:length(endowithlagnames)
    lags = abs(endolags_(i));
    variable = initialconditions{endowithlagnames{i}};
    nanvalues = isnan(variable.data);
    if any(nanvalues(end-(lags-1):end))
        missinginitialcondition = true;
        for j=variable.nobs:-1:variable.nobs-(lags-1)
            if isnan(variable.data(j))
                dprintf('Variable %s should not have a NaN value in period %s.', endowithlagnames{i}, date2string(variable.dates(j)))
            end
        end
    end
end
if missinginitialcondition
    skipline()
    error('Please fix the dseries object used for setting the initial conditions!')
end

% If the model has lags on the exogenous variables, test if we have corresponding initial conditions.
exonames = DynareModel.exo_names;
missingexogenousvariables = setdiff(exonames, initialconditions.name);
exolags = get_lags_on_exogenous_variables(DynareModel);
exolags_ = exolags(find(exolags));
exowithlagnames = exonames(find(exolags));
if ~isempty(missingexogenousvariables)
    missingexogenousvariables = setdiff(exowithlagnames, initialconditions.name);
    missingexogenouslaggedvariables = intersect(exowithlagnames, missingexogenousvariables);
    if ~isempty(missingexogenouslaggedvariables)
        disp('You have to initialize the following exogenous variables:')
        msg = sprintf('%s\n', missingexogenouslaggedvariables{1:end-1});
        msg = sprintf('%s%s', msg, missingexogenouslaggedvariables{end});
        disp(msg)
        skipline()
        error('Please fix the dseries object used for setting the initial conditions!')
    end
end

% Test if we have enough periods in the database.
maxlag = abs(min(exolags));
if maxlag>initialconditions.nobs
    error('The dseries object provided as first input argument should at least have %s periods!', num2str(maxlag))
end
missinginitialcondition = false;
for i = 1:length(exowithlagnames)
    lags = abs(exolags_(i));
    variable = initialconditions{exowithlagnames{i}};
    nanvalues = isnan(variable.data);
    if any(nanvalues(end-(lags-1):end))
        missinginitialcondition = true;
        for j=variable.nobs:-1:variable.nobs-(lags-1)
            if isnan(variable.data(j))
                dprintf('Variable %s should not have a NaN value in period %s.', exowithlagnames{i}, date2string(variable.dates(j)))
            end
        end
    end
end
if missinginitialcondition
    skipline()
    error('Please fix the dseries object used for setting the initial conditions!')
end

if nargin<6 || isempty(innovations)
    % Set the covariance matrix of the structural innovations.
    variances = diag(DynareModel.Sigma_e);
    number_of_shocks = length(DynareModel.Sigma_e);
    positive_var_indx = find(variances>0);
    effective_number_of_shocks = length(positive_var_indx);
    covariance_matrix = DynareModel.Sigma_e(positive_var_indx,positive_var_indx);
    covariance_matrix_upper_cholesky = chol(covariance_matrix);
    % Set seed to its default state.
    if DynareOptions.bnlms.set_dynare_seed_to_default
        set_dynare_seed('default');
    end
    % Simulate structural innovations.
    switch DynareOptions.bnlms.innovation_distribution
      case 'gaussian'
        DynareOutput.bnlms.shocks = randn(samplesize,effective_number_of_shocks)*covariance_matrix_upper_cholesky;
      otherwise
        error(['simul_backward_nonlinear_model:: ' DynareOption.bnlms.innovation_distribution ' distribution for the structural innovations is not (yet) implemented!'])
    end
    % Put the simulated innovations in DynareOutput.exo_simul.
    DynareOutput.exo_simul = zeros(samplesize,number_of_shocks);
    DynareOutput.exo_simul(:,positive_var_indx) = DynareOutput.bnlms.shocks;
    innovations = DynareOutput.exo_simul;
else
    DynareOutput.exo_simul = innovations; % innovations
end

% Initialization of the returned simulations.
DynareOutput.endo_simul = NaN(DynareModel.endo_nbr, samplesize+initialconditions.nobs);
for i=1:length(endonames)
    if ismember(endonames{i}, initialconditions.name)
        DynareOutput.endo_simul(i,1:initialconditions.nobs) = transpose(initialconditions{endonames{i}}.data);
    end
end

% Initialization of the array for the exogenous variables.
DynareOutput.exo_simul = [NaN(initialconditions.nobs, DynareModel.exo_nbr); DynareOutput.exo_simul ];
for i=1:length(exonames)
    if ismember(exonames{i}, initialconditions.name)
        DynareOutput.exo_simul(1:initialconditions.nobs, i) = initialconditions{exonames{i}}.data;
    end
end


if nargout>8
    nx = size(DynareOutput.exo_simul,2);
    ny0 = nnz(DynareModel.lead_lag_incidence(2,:));
    ny1 = nnz(DynareModel.lead_lag_incidence(1,:));
    iy1 = find(DynareModel.lead_lag_incidence(1,:)>0);
    idx = 1:DynareModel.endo_nbr;
    jdx = idx+ny1;
    % Get the name of the dynamic model routine.
    model_dynamic = str2func([DynareModel.fname,'.dynamic']);
    % initialization of vector y.
    y = NaN(length(idx)+ny1,1);
end