File: check_posterior_sampler_options.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (436 lines) | stat: -rw-r--r-- 21,249 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
function [posterior_sampler_options, options_] = check_posterior_sampler_options(posterior_sampler_options, options_, bounds)

% function [posterior_sampler_options, options_] = check_posterior_sampler_options(posterior_sampler_options, options_, bounds)
% initialization of posterior samplers
%
% INPUTS
%   posterior_sampler_options:       posterior sampler options
%   options_:       structure storing the options

% OUTPUTS
%   posterior_sampler_options:       checked posterior sampler options
%
% SPECIAL REQUIREMENTS
%   none

% Copyright (C) 2015-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.


init=0;
if isempty(posterior_sampler_options)
    init=1;
end

if init
    % set default options and user defined options
    posterior_sampler_options.posterior_sampling_method = options_.posterior_sampler_options.posterior_sampling_method;
    posterior_sampler_options.bounds = bounds;

    switch posterior_sampler_options.posterior_sampling_method

      case 'random_walk_metropolis_hastings'
        posterior_sampler_options.parallel_bar_refresh_rate=50;
        posterior_sampler_options.serial_bar_refresh_rate=3;
        posterior_sampler_options.parallel_bar_title='RWMH';
        posterior_sampler_options.serial_bar_title='RW Metropolis-Hastings';

        % default options
        posterior_sampler_options = add_fields_(posterior_sampler_options,options_.posterior_sampler_options.rwmh);

        % user defined options
        if ~isempty(options_.posterior_sampler_options.sampling_opt)
            options_list = read_key_value_string(options_.posterior_sampler_options.sampling_opt);
            for i=1:rows(options_list)
                switch options_list{i,1}

                  case 'proposal_distribution'
                    if ~(strcmpi(options_list{i,2}, 'rand_multivariate_student') || ...
                         strcmpi(options_list{i,2}, 'rand_multivariate_normal'))
                        error(['initial_estimation_checks:: the proposal_distribution option to estimation takes either ' ...
                               'rand_multivariate_student or rand_multivariate_normal as options']);
                    else
                        posterior_sampler_options.proposal_distribution=options_list{i,2};
                    end


                  case 'student_degrees_of_freedom'
                    if options_list{i,2} <= 0
                        error('initial_estimation_checks:: the student_degrees_of_freedom takes a positive integer argument');
                    else
                        posterior_sampler_options.student_degrees_of_freedom=options_list{i,2};
                    end

                  case 'use_mh_covariance_matrix'
                    % indicates to use the covariance matrix from previous iterations to
                    % define the covariance of the proposal distribution
                    % default = 0
                    posterior_sampler_options.use_mh_covariance_matrix = options_list{i,2};
                    options_.use_mh_covariance_matrix = options_list{i,2};
                  case 'scale_file'
                    % load optimal_mh_scale parameter if previous run was with mode_compute=6
                    % will overwrite jscale from set_prior.m
                    if exist(options_list{i,2},'file') || exist([options_list{i,2},'.mat'],'file')
                        tmp = load(options_list{i,2},'Scale');
                        global bayestopt_
                        bayestopt_.mh_jscale = tmp.Scale;
                        options_.mh_jscale = tmp.Scale;
                        bayestopt_.jscale = ones(size(bounds.lb,1),1)*tmp.Scale;
                        %                                 options_.mh_init_scale = 2*options_.mh_jscale;
                    else
                        error('initial_estimation_checks:: The specified mh_scale_file does not exist.')
                    end
                  case 'save_tmp_file'
                    posterior_sampler_options.save_tmp_file = options_list{i,2};
                  otherwise
                    warning(['rwmh_sampler: Unknown option (' options_list{i,1} ')!'])
                end
            end
        end

      case 'tailored_random_block_metropolis_hastings'
        posterior_sampler_options.parallel_bar_refresh_rate=5;
        posterior_sampler_options.serial_bar_refresh_rate=1;
        posterior_sampler_options.parallel_bar_title='TaRB-MH';
        posterior_sampler_options.serial_bar_title='TaRB Metropolis-Hastings';

        % default options
        posterior_sampler_options = add_fields_(posterior_sampler_options,options_.posterior_sampler_options.tarb);

        % user defined options
        if ~isempty(options_.posterior_sampler_options.sampling_opt)
            options_list = read_key_value_string(options_.posterior_sampler_options.sampling_opt);
            for i=1:rows(options_list)

                switch options_list{i,1}

                  case 'proposal_distribution'
                    if ~(strcmpi(options_list{i,2}, 'rand_multivariate_student') || ...
                         strcmpi(options_list{i,2}, 'rand_multivariate_normal'))
                        error(['initial_estimation_checks:: the proposal_distribution option to estimation takes either ' ...
                               'rand_multivariate_student or rand_multivariate_normal as options']);
                    else
                        posterior_sampler_options.proposal_distribution=options_list{i,2};
                    end


                  case 'student_degrees_of_freedom'
                    if options_list{i,2} <= 0
                        error('initial_estimation_checks:: the student_degrees_of_freedom takes a positive integer argument');
                    else
                        posterior_sampler_options.student_degrees_of_freedom=options_list{i,2};
                    end

                  case 'mode_compute'
                    posterior_sampler_options.mode_compute=options_list{i,2};

                  case 'optim'
                    posterior_sampler_options.optim_opt=options_list{i,2};

                  case 'new_block_probability'
                    if options_list{i,2}<0 || options_list{i,2}>1
                        error('check_posterior_sampler_options:: The tarb new_block_probability must be between 0 and 1!')
                    else
                        posterior_sampler_options.new_block_probability=options_list{i,2};
                    end
                  case 'scale_file'
                    % load optimal_mh_scale parameter if previous run was with mode_compute=6
                    % will overwrite jscale from set_prior.m
                    if exist(options_list{i,2},'file') || exist([options_list{i,2},'.mat'],'file')
                        tmp = load(options_list{i,2},'Scale');
                        global bayestopt_
                        bayestopt_.mh_jscale = tmp.Scale;
                        options_.mh_jscale = tmp.Scale;
                        bayestopt_.jscale = ones(size(bounds.lb,1),1)*tmp.Scale;
                        %                                 options_.mh_init_scale = 2*options_.mh_jscale;
                    else
                        error('initial_estimation_checks:: The specified scale_file does not exist.')
                    end
                  case 'save_tmp_file'
                    posterior_sampler_options.save_tmp_file = options_list{i,2};

                  otherwise
                    warning(['tarb_sampler: Unknown option (' options_list{i,1} ')!'])

                end

            end

        end

      case 'independent_metropolis_hastings'
        posterior_sampler_options.parallel_bar_refresh_rate=50;
        posterior_sampler_options.serial_bar_refresh_rate=3;
        posterior_sampler_options.parallel_bar_title='IMH';
        posterior_sampler_options.serial_bar_title='Ind. Metropolis-Hastings';

        % default options
        posterior_sampler_options = add_fields_(posterior_sampler_options,options_.posterior_sampler_options.imh);

        % user defined options
        if ~isempty(options_.posterior_sampler_options.sampling_opt)
            options_list = read_key_value_string(options_.posterior_sampler_options.sampling_opt);
            for i=1:rows(options_list)
                switch options_list{i,1}

                  case 'proposal_distribution'
                    if ~(strcmpi(options_list{i,2}, 'rand_multivariate_student') || ...
                         strcmpi(options_list{i,2}, 'rand_multivariate_normal'))
                        error(['initial_estimation_checks:: the proposal_distribution option to estimation takes either ' ...
                               'rand_multivariate_student or rand_multivariate_normal as options']);
                    else
                        posterior_sampler_options.proposal_distribution=options_list{i,2};
                    end


                  case 'student_degrees_of_freedom'
                    if options_list{i,2} <= 0
                        error('initial_estimation_checks:: the student_degrees_of_freedom takes a positive integer argument');
                    else
                        posterior_sampler_options.student_degrees_of_freedom=options_list{i,2};
                    end

                  case 'use_mh_covariance_matrix'
                    % indicates to use the covariance matrix from previous iterations to
                    % define the covariance of the proposal distribution
                    % default = 0
                    posterior_sampler_options.use_mh_covariance_matrix = options_list{i,2};
                    options_.use_mh_covariance_matrix = options_list{i,2};

                  case 'save_tmp_file'
                    posterior_sampler_options.save_tmp_file = options_list{i,2};

                  otherwise
                    warning(['imh_sampler: Unknown option (' options_list{i,1} ')!'])
                end
            end
        end


      case 'slice'
        posterior_sampler_options.parallel_bar_refresh_rate=1;
        posterior_sampler_options.serial_bar_refresh_rate=1;
        posterior_sampler_options.parallel_bar_title='SLICE';
        posterior_sampler_options.serial_bar_title='SLICE';

        % default options
        posterior_sampler_options = add_fields_(posterior_sampler_options,options_.posterior_sampler_options.slice);

        % user defined options
        if ~isempty(options_.posterior_sampler_options.sampling_opt)
            options_list = read_key_value_string(options_.posterior_sampler_options.sampling_opt);
            for i=1:rows(options_list)
                switch options_list{i,1}
                  case 'rotated'
                    % triggers rotated slice iterations using a covariance
                    % matrix from initial burn-in iterations
                    % must be associated with:
                    % <use_mh_covariance_matrix> or <slice_initialize_with_mode>
                    % default  = 0
                    posterior_sampler_options.rotated = options_list{i,2};

                  case 'mode'
                    % for multimodal posteriors, provide the list of modes as a
                    % matrix, ordered by column, i.e. [x1 x2 x3] for three
                    % modes x1 x2 x3
                    % MR note: not sure this is possible with the
                    % read_key_value_string ???
                    % if this is not possible <mode_files> does to job in any case
                    % This will automatically trigger <rotated>
                    % default = []
                    tmp_mode = options_list{i,2};
                    for j=1:size(tmp_mode,2)
                        posterior_sampler_options.mode(j).m = tmp_mode(:,j);
                    end

                  case 'mode_files'
                    % for multimodal posteriors provide the name of
                    % a file containing a variable array xparams = [nparam * nmodes]
                    % one column per mode. With this info, the code will automatically
                    % set the <mode> option.
                    % This will automatically trigger <rotated>
                    % default = []
                    posterior_sampler_options.mode_files = options_list{i,2};

                  case 'slice_initialize_with_mode'
                    % the default for slice is to set mode_compute = 0 in the
                    % preprocessor and start the chain(s) from a random location in the prior.
                    % This option first runs the optimizer and then starts the
                    % chain from the mode. Associated with optios <rotated>, it will
                    % use invhess from the mode to perform rotated slice
                    % iterations.
                    % default = 0
                    posterior_sampler_options.slice_initialize_with_mode = options_list{i,2};

                  case 'initial_step_size'
                    % sets the initial size of the interval in the STEPPING-OUT PROCEDURE
                    % the initial_step_size must be a real number in [0, 1],
                    % and it sets the size as a proportion of the prior bounds,
                    % i.e. the size will be initial_step_size*(UB-LB)
                    % slice sampler requires prior_truncation > 0!
                    % default = 0.8
                    if options_list{i,2}<=0 || options_list{i,2}>=1
                        error('check_posterior_sampler_options:: slice initial_step_size must be between 0 and 1')
                    else
                        posterior_sampler_options.initial_step_size=options_list{i,2};
                    end
                  case 'use_mh_covariance_matrix'
                    % in association with <rotated> indicates to use the
                    % covariance matrix from previous iterations to define the
                    % rotated slice
                    % default = 0
                    posterior_sampler_options.use_mh_covariance_matrix = options_list{i,2};
                    options_.use_mh_covariance_matrix = options_list{i,2};

                  case 'save_tmp_file'
                    posterior_sampler_options.save_tmp_file = options_list{i,2};

                  otherwise
                    warning(['slice_sampler: Unknown option (' options_list{i,1} ')!'])
                end
            end
        end

        % slice posterior sampler does not require mode or hessian to run
        % needs to be set to 1 to skip parts in dynare_estimation_1.m
        % requiring posterior maximization/calibrated smoother before MCMC
        options_.mh_posterior_mode_estimation=1;

        if ~ posterior_sampler_options.slice_initialize_with_mode
            % by default, slice sampler should trigger
            % mode_compute=0 and
            % mh_replic=100 (much smaller than the default mh_replic=20000 of RWMH)
            options_.mode_compute = 0;
            options_.cova_compute = 0;
        else
            if (isequal(options_.mode_compute,0) && isempty(options_.mode_file) )
                skipline()
                disp('check_posterior_sampler_options:: You have specified the option "slice_initialize_with_mode"')
                disp('check_posterior_sampler_options:: to initialize the slice sampler using mode information')
                disp('check_posterior_sampler_options:: but no mode file nor posterior maximization is selected,')
                error('check_posterior_sampler_options:: The option "slice_initialize_with_mode" is inconsistent with mode_compute=0 or empty mode_file.')
            else
                options_.mh_posterior_mode_estimation=0;
            end
        end

        if any(isinf(bounds.lb)) || any(isinf(bounds.ub))
            skipline()
            disp('some priors are unbounded and prior_trunc is set to zero')
            error('The option "slice" is inconsistent with prior_trunc=0.')
        end

        % moreover slice must be associated to:
        %     options_.mh_posterior_mode_estimation = 0;
        % this is done below, but perhaps preprocessing should do this?

        if ~isempty(posterior_sampler_options.mode)
            % multimodal case
            posterior_sampler_options.rotated = 1;
            posterior_sampler_options.WR=[];
        end
        %     posterior_sampler_options = set_default_option(posterior_sampler_options,'mode_files',[]);


        posterior_sampler_options.W1=posterior_sampler_options.initial_step_size*(bounds.ub-bounds.lb);
        if options_.load_mh_file
            posterior_sampler_options.slice_initialize_with_mode = 0;
        else
            if ~posterior_sampler_options.slice_initialize_with_mode
                posterior_sampler_options.invhess=[];
            end
        end

        if ~isempty(posterior_sampler_options.mode_files) % multimodal case
            modes = posterior_sampler_options.mode_files; % these can be also mean files from previous parallel slice chains
            load(modes, 'xparams')
            if size(xparams,2)<2
                error(['check_posterior_sampler_options:: Variable xparams loaded in file <' modes '> has size [' int2str(size(xparams,1)) 'x' int2str(size(xparams,2)) ']: it must contain at least two columns, to allow multi-modal sampling.'])
            end
            for j=1:size(xparams,2)
                mode(j).m=xparams(:,j);
            end
            posterior_sampler_options.mode = mode;
            posterior_sampler_options.rotated = 1;
            posterior_sampler_options.WR=[];
        end

      otherwise
        error('check_posterior_sampler_options:: Unknown posterior_sampling_method option %s ',posterior_sampler_options.posterior_sampling_method);
    end

    return
end

% here are all samplers requiring a proposal distribution
if ~strcmp(posterior_sampler_options.posterior_sampling_method,'slice')
    if ~options_.cova_compute && ~(options_.load_mh_file && posterior_sampler_options.use_mh_covariance_matrix)
        skipline()
        disp('check_posterior_sampler_options:: I cannot start the MCMC because the Hessian of the posterior kernel at the mode was not computed')
        disp('check_posterior_sampler_options:: or there is no previous MCMC to load ')
        error('check_posterior_sampler_options:: MCMC cannot start')
    end
end

if options_.load_mh_file && posterior_sampler_options.use_mh_covariance_matrix
    [~, invhess] = compute_mh_covariance_matrix;
    posterior_sampler_options.invhess = invhess;
end



% check specific options for slice sampler
if strcmp(posterior_sampler_options.posterior_sampling_method,'slice')
    invhess = posterior_sampler_options.invhess;
    if posterior_sampler_options.rotated
        if isempty(posterior_sampler_options.mode_files) && isempty(posterior_sampler_options.mode) % rotated unimodal
            if ~options_.cova_compute && ~(options_.load_mh_file && posterior_sampler_options.use_mh_covariance_matrix)
                skipline()
                disp('check_posterior_sampler_options:: I cannot start rotated slice sampler because')
                disp('check_posterior_sampler_options:: there is no previous MCMC to load ')
                disp('check_posterior_sampler_options:: or the Hessian at the mode is not computed.')
                error('check_posterior_sampler_options:: Rotated slice cannot start')
            end
            if isempty(invhess)
                error('check_posterior_sampler_options:: This error should not occur, please contact developers.')
            end
            % % %             if options_.load_mh_file && options_.use_mh_covariance_matrix,
            % % %                 [~, invhess] = compute_mh_covariance_matrix;
            % % %                 posterior_sampler_options.invhess = invhess;
            % % %             end
            [V1, D]=eig(invhess);
            posterior_sampler_options.V1=V1;
            posterior_sampler_options.WR=sqrt(diag(D))*3;
        end
    else
        if ~options_.load_mh_file && ~posterior_sampler_options.slice_initialize_with_mode
            posterior_sampler_options.invhess=[];
        end
    end
    % needs to be re-set to zero otherwise posterior analysis is filtered
    % out in dynare_estimation_1.m
    options_.mh_posterior_mode_estimation = 0;
end

return

function posterior_sampler_options = add_fields_(posterior_sampler_options, sampler_options)

fnam = fieldnames(sampler_options);
for j=1:length(fnam)
    posterior_sampler_options.(fnam{j}) = sampler_options.(fnam{j});
end