1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
function varargout = prior(varargin)
% Computes various prior statistics and display them in the command window.
%
% INPUTS
% 'table', 'moments', 'optimize', 'simulate', 'plot', 'moments(distribution)'
%
% OUTPUTS
% none
%
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 2015-2019 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
if isempty(varargin) || ( isequal(length(varargin), 1) && isequal(varargin{1},'help'))
skipline()
disp('Possible options are:')
disp(' + table Prints a table describing the priors.')
disp(' + moments Computes and displays moments of the endogenous variables at the prior mode.')
disp(' + optimize Optimizes the prior density (starting from a random initial guess).')
disp(' + simulate Computes the effective prior mass (using a Monte-Carlo).')
disp(' + plot Plots the marginal prior densities.')
disp(' + moments(distribution) Print tables describing the implied prior for the first and second order unconditional')
disp(' moments of all the endogenous variables.')
skipline()
return
end
global options_ M_ estim_params_ bayestopt_ oo_
donesomething = false;
if ~isbayes(estim_params_)
warning('No prior detected!')
return
end
if (size(estim_params_.var_endo,1) || size(estim_params_.corrn,1))
% Prior over measurement errors are defined...
if ((isfield(options_,'varobs') && isempty(options_.varobs)) || ~isfield(options_,'varobs'))
% ... But the list of observed variabled is not yet defined.
warning('Prior detected on measurement erros, but no list of observed variables (varobs is missing)!')
return
end
end
% Fill or update bayestopt_ structure
[xparam1, estim_params_, BayesOptions, lb, ub, Model] = set_prior(estim_params_, M_, options_);
% Set restricted state space
options_plot_priors_old=options_.plot_priors;
options_.plot_priors=0;
[~,~,~,~, M_, options_, oo_, estim_params_, BayesOptions] = ...
dynare_estimation_init(M_.endo_names, M_.fname, 1, M_, options_, oo_, estim_params_, bayestopt_);
options_.plot_priors=options_plot_priors_old;
% Temporarly change qz_criterium option value
changed_qz_criterium_flag = 0;
if isempty(options_.qz_criterium)
options_.qz_criterium = 1+1e-9;
changed_qz_criterium_flag = 1;
end
Model.dname = Model.fname;
% Temporarly set options_.order equal to one
order = options_.order;
options_.order = 1;
if ismember('plot', varargin)
plot_priors(BayesOptions, Model, estim_params_, options_)
donesomething = true;
end
if ismember('table', varargin)
print_table_prior(lb, ub, options_, Model, BayesOptions, estim_params_);
donesomething = true;
end
if ismember('simulate', varargin) % Prior simulations (BK).
if ismember('moments(distribution)', varargin)
results = prior_sampler(1, Model, BayesOptions, options_, oo_, estim_params_);
else
results = prior_sampler(0, Model, BayesOptions, options_, oo_, estim_params_);
end
% Display prior mass info
skipline(2)
disp(['Prior mass = ' num2str(results.prior.mass)])
disp(['BK indeterminacy share = ' num2str(results.bk.indeterminacy_share)])
disp(['BK unstability share = ' num2str(results.bk.unstability_share)])
disp(['BK singularity share = ' num2str(results.bk.singularity_share)])
disp(['Complex jacobian share = ' num2str(results.jacobian.problem_share)])
disp(['mjdgges crash share = ' num2str(results.dll.problem_share)])
disp(['Steady state problem share = ' num2str(results.ss.problem_share)])
disp(['Complex steady state share = ' num2str(results.ss.complex_share)])
disp(['Endogenous prior violation share = ' num2str(results.endogenous_prior_violation_share)])
if options_.loglinear
disp(['Nonpositive steady state share = ' num2str(results.ss.nonpositive_share)])
end
disp(['Analytical steady state problem share = ' num2str(results.ass.problem_share)])
skipline(2)
donesomething = true;
end
if ismember('optimize', varargin) % Prior optimization.
optimize_prior(options_, Model, oo_, BayesOptions, estim_params_);
donesomething = true;
end
if ismember('moments', varargin) % Prior simulations (2nd order moments).
% Set estimated parameters to the prior mode...
xparam1 = BayesOptions.p5;
% ... Except for uniform priors (use the prior mean)!
k = find(isnan(xparam1));
xparam1(k) = BayesOptions.p1(k);
% Update vector of parameters and covariance matrices
Model = set_all_parameters(xparam1, estim_params_, Model);
% Check model.
check_model(Model);
% Compute state space representation of the model.
oo__ = oo_;
oo__.dr = set_state_space(oo__.dr, Model, options_);
% Solve model
[T,R,~,info,Model , options__ , oo__] = dynare_resolve(Model , options_ ,oo__,'restrict');
if ~info(1)
info=endogenous_prior_restrictions(T,R,Model , options__ , oo__);
end
if info
skipline()
message = get_error_message(info,options_);
fprintf('Cannot solve the model on the prior mode (info = %d, %s)\n', info(1), message);
skipline()
return
end
% Compute and display second order moments
oo__ = disp_th_moments(oo__.dr, [], Model, options__, oo__);
skipline(2)
donesomething = true;
end
if ismember('moments(distribution)', varargin) % Prior simulations (BK).
if ~ismember('simulate', varargin)
results = prior_sampler(1, Model, BayesOptions, options_, oo_, estim_params_);
end
priorpath = [Model.dname filesep() 'prior' filesep() 'draws' filesep()];
list_of_files = dir([priorpath 'prior_draws*']);
FirstOrderMoments = NaN(Model.orig_endo_nbr, options_.prior_mc);
SecondOrderMoments = NaN(Model.orig_endo_nbr, Model.orig_endo_nbr, options_.prior_mc);
iter = 1;
noprint = options_.noprint;
options_.noprint = 1;
for i=1:length(list_of_files)
tmp = load([priorpath list_of_files(i).name]);
for j = 1:size(tmp.pdraws, 1)
if ~tmp.pdraws{j,2}
dr = tmp.pdraws{j,3};
oo__ = oo_;
oo__.dr = dr;
Model=set_parameters_locally(Model,tmp.pdraws{j,1});% Needed to update the covariance matrix of the state innovations.
oo__ = disp_th_moments(oo__.dr, [], Model, options_, oo__);
FirstOrderMoments(:,iter) = oo__.mean;
SecondOrderMoments(:,:,iter) = oo__.var;
iter = iter+1;
end
end
end
save([M_.dname filesep() 'prior' filesep() M_.fname '_endogenous_variables_prior_draws.mat'], 'FirstOrderMoments', 'SecondOrderMoments')
skipline(2)
options_.noprint = noprint;
% First order moments
FirstOrderMoments = FirstOrderMoments(:,1:iter-1);
SecondOrderMoments = SecondOrderMoments(:,:,1:iter-1);
PriorExpectationOfFirstOrderMoments = mean(FirstOrderMoments, 2);
PriorVarianceOfFirstOrderMoments = ...
mean(bsxfun(@minus, FirstOrderMoments, PriorExpectationOfFirstOrderMoments).^2, 2);
% Second order moments
PriorExpectationOfSecondOrderMoments = mean(SecondOrderMoments, 3);
PriorVarianceOfSecondOrderMoments = ...
mean(bsxfun(@minus, SecondOrderMoments, PriorExpectationOfSecondOrderMoments).^2, 3);
% Display first and second order moments implied priors (expectation and variance)
print_moments_implied_prior(M_, PriorExpectationOfFirstOrderMoments, ...
PriorVarianceOfFirstOrderMoments, ...
PriorExpectationOfSecondOrderMoments, ...
PriorVarianceOfSecondOrderMoments);
donesomething = true;
end
if changed_qz_criterium_flag
options_.qz_criterium = [];
end
options_.order = order;
if ~donesomething
error('prior: Unexpected arguments!')
end
|