File: prior.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (212 lines) | stat: -rw-r--r-- 8,690 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
function varargout = prior(varargin)

% Computes various prior statistics and display them in the command window.
%
% INPUTS
%   'table', 'moments', 'optimize', 'simulate', 'plot', 'moments(distribution)'
%
% OUTPUTS
%   none
%
% SPECIAL REQUIREMENTS
%   none

% Copyright (C) 2015-2019 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

if isempty(varargin) || ( isequal(length(varargin), 1) && isequal(varargin{1},'help'))
    skipline()
    disp('Possible options are:')
    disp(' + table                 Prints a table describing the priors.')
    disp(' + moments               Computes and displays moments of the endogenous variables at the prior mode.')
    disp(' + optimize              Optimizes the prior density (starting from a random initial guess).')
    disp(' + simulate              Computes the effective prior mass (using a Monte-Carlo).')
    disp(' + plot                  Plots the marginal prior densities.')
    disp(' + moments(distribution) Print tables describing the implied prior for the first and second order unconditional')
    disp('                         moments of all the endogenous variables.')
    skipline()
    return
end

global options_ M_ estim_params_ bayestopt_ oo_

donesomething = false;

if ~isbayes(estim_params_)
    warning('No prior detected!')
    return
end

if (size(estim_params_.var_endo,1) || size(estim_params_.corrn,1))
    % Prior over measurement errors are defined...
    if ((isfield(options_,'varobs') && isempty(options_.varobs)) || ~isfield(options_,'varobs'))
        % ... But the list of observed variabled is not yet defined.
        warning('Prior detected on measurement erros, but no list of observed variables (varobs is missing)!')
        return
    end
end

% Fill or update bayestopt_ structure
[xparam1, estim_params_, BayesOptions, lb, ub, Model] = set_prior(estim_params_, M_, options_);
% Set restricted state space
options_plot_priors_old=options_.plot_priors;
options_.plot_priors=0;
[~,~,~,~, M_, options_, oo_, estim_params_, BayesOptions] = ...
    dynare_estimation_init(M_.endo_names, M_.fname, 1, M_, options_, oo_, estim_params_, bayestopt_);
options_.plot_priors=options_plot_priors_old;


% Temporarly change qz_criterium option value
changed_qz_criterium_flag  = 0;
if isempty(options_.qz_criterium)
    options_.qz_criterium = 1+1e-9;
    changed_qz_criterium_flag  = 1;
end

Model.dname = Model.fname;

% Temporarly set options_.order equal to one
order = options_.order;
options_.order = 1;

if ismember('plot', varargin)
    plot_priors(BayesOptions, Model, estim_params_, options_)
    donesomething = true;
end

if ismember('table', varargin)
    print_table_prior(lb, ub, options_, Model, BayesOptions, estim_params_);
    donesomething = true;
end

if ismember('simulate', varargin) % Prior simulations (BK).
    if ismember('moments(distribution)', varargin)
        results = prior_sampler(1, Model, BayesOptions, options_, oo_, estim_params_);
    else
        results = prior_sampler(0, Model, BayesOptions, options_, oo_, estim_params_);
    end
    % Display prior mass info
    skipline(2)
    disp(['Prior mass = ' num2str(results.prior.mass)])
    disp(['BK indeterminacy share                = ' num2str(results.bk.indeterminacy_share)])
    disp(['BK unstability share                  = ' num2str(results.bk.unstability_share)])
    disp(['BK singularity share                  = ' num2str(results.bk.singularity_share)])
    disp(['Complex jacobian share                = ' num2str(results.jacobian.problem_share)])
    disp(['mjdgges crash share                   = ' num2str(results.dll.problem_share)])
    disp(['Steady state problem share            = ' num2str(results.ss.problem_share)])
    disp(['Complex steady state share            = ' num2str(results.ss.complex_share)])
    disp(['Endogenous prior violation share      = ' num2str(results.endogenous_prior_violation_share)])
    if options_.loglinear
        disp(['Nonpositive steady state share        = ' num2str(results.ss.nonpositive_share)])
    end
    disp(['Analytical steady state problem share = ' num2str(results.ass.problem_share)])
    skipline(2)
    donesomething = true;
end

if ismember('optimize', varargin) % Prior optimization.
    optimize_prior(options_, Model, oo_, BayesOptions, estim_params_);
    donesomething = true;
end

if ismember('moments', varargin) % Prior simulations (2nd order moments).
                                 % Set estimated parameters to the prior mode...
    xparam1 = BayesOptions.p5;
    % ... Except for uniform priors (use the prior mean)!
    k = find(isnan(xparam1));
    xparam1(k) = BayesOptions.p1(k);
    % Update vector of parameters and covariance matrices
    Model = set_all_parameters(xparam1, estim_params_, Model);
    % Check model.
    check_model(Model);
    % Compute state space representation of the model.
    oo__ = oo_;
    oo__.dr = set_state_space(oo__.dr, Model, options_);
    % Solve model
    [T,R,~,info,Model , options__ , oo__] = dynare_resolve(Model , options_ ,oo__,'restrict');
    if ~info(1)
        info=endogenous_prior_restrictions(T,R,Model , options__ , oo__);
    end
    if info
        skipline()
        message = get_error_message(info,options_);
        fprintf('Cannot solve the model on the prior mode (info = %d, %s)\n', info(1), message);
        skipline()
        return
    end
    % Compute and display second order moments
    oo__ = disp_th_moments(oo__.dr, [], Model, options__, oo__);
    skipline(2)
    donesomething = true;
end

if ismember('moments(distribution)', varargin) % Prior simulations (BK).
    if ~ismember('simulate', varargin)
        results = prior_sampler(1, Model, BayesOptions, options_, oo_, estim_params_);
    end
    priorpath = [Model.dname filesep() 'prior' filesep() 'draws' filesep()];
    list_of_files = dir([priorpath 'prior_draws*']);
    FirstOrderMoments = NaN(Model.orig_endo_nbr, options_.prior_mc);
    SecondOrderMoments = NaN(Model.orig_endo_nbr, Model.orig_endo_nbr, options_.prior_mc);
    iter = 1;
    noprint = options_.noprint;
    options_.noprint = 1;
    for i=1:length(list_of_files)
        tmp = load([priorpath list_of_files(i).name]);
        for j = 1:size(tmp.pdraws, 1)
            if ~tmp.pdraws{j,2}
                dr = tmp.pdraws{j,3};
                oo__ = oo_;
                oo__.dr = dr;
                Model=set_parameters_locally(Model,tmp.pdraws{j,1});% Needed to update the covariance matrix of the state innovations.
                oo__ = disp_th_moments(oo__.dr, [], Model, options_, oo__);
                FirstOrderMoments(:,iter) = oo__.mean;
                SecondOrderMoments(:,:,iter) = oo__.var;
                iter = iter+1;
            end
        end
    end
    save([M_.dname filesep() 'prior' filesep() M_.fname '_endogenous_variables_prior_draws.mat'], 'FirstOrderMoments', 'SecondOrderMoments')
    skipline(2)
    options_.noprint = noprint;
    % First order moments
    FirstOrderMoments = FirstOrderMoments(:,1:iter-1);
    SecondOrderMoments = SecondOrderMoments(:,:,1:iter-1);
    PriorExpectationOfFirstOrderMoments = mean(FirstOrderMoments, 2);
    PriorVarianceOfFirstOrderMoments = ...
        mean(bsxfun(@minus, FirstOrderMoments, PriorExpectationOfFirstOrderMoments).^2, 2);
    % Second order moments
    PriorExpectationOfSecondOrderMoments = mean(SecondOrderMoments, 3);
    PriorVarianceOfSecondOrderMoments = ...
        mean(bsxfun(@minus, SecondOrderMoments, PriorExpectationOfSecondOrderMoments).^2, 3);
    % Display first and second order moments implied priors (expectation and variance)
    print_moments_implied_prior(M_, PriorExpectationOfFirstOrderMoments, ...
                                PriorVarianceOfFirstOrderMoments, ...
                                PriorExpectationOfSecondOrderMoments, ...
                                PriorVarianceOfSecondOrderMoments);
    donesomething = true;
end

if changed_qz_criterium_flag
    options_.qz_criterium = [];
end

options_.order = order;

if ~donesomething
    error('prior: Unexpected arguments!')
end