File: conditional_variance_decomposition_ME_mc_analysis.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (139 lines) | stat: -rw-r--r-- 6,178 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
function oo_ = ...
    conditional_variance_decomposition_ME_mc_analysis(NumberOfSimulations, type, dname, fname, Steps, exonames, exo, var_list, endo, mh_conf_sig, oo_,options_)
% This function analyses the (posterior or prior) distribution of the
% endogenous variables' conditional variance decomposition with measurement error.
%
% INPUTS
%   NumberOfSimulations     [integer]           scalar, number of simulations.
%   type                    [string]            'prior' or 'posterior'
%   dname                   [string]            directory name where to save
%   fname                   [string]            name of the mod-file
%   Steps                   [integers]          horizons at which to conduct decomposition
%   exonames                [string]            (n_exo*char_length) character array with names of exogenous variables
%   exo                     [string]            name of current exogenous
%                                               variable
%   var_list                [string]            (n_endo*char_length) character array with name
%                                               of endogenous variables
%   endo                    [integer]           Current endogenous variable
%   mh_conf_sig             [double]            2 by 1 vector with upper
%                                               and lower bound of HPD intervals
%   oo_                     [structure]         Dynare structure where the results are saved.
%
% OUTPUTS
%   oo_          [structure]        Dynare structure where the results are saved.

% Copyright (C) 2017-2018 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

if strcmpi(type,'posterior')
    TYPE = 'Posterior';
    PATH = [dname '/metropolis/'];
else
    TYPE = 'Prior';
    PATH = [dname '/prior/moments/'];
end

endogenous_variable_index = check_name(var_list, endo);
if isempty(endogenous_variable_index)
    disp([ type '_analysis:: Can''t find ' endo '!'])
    return
end

exogenous_variable_index = check_name(exonames,exo);
if isempty(exogenous_variable_index)
    if isequal(exo,'ME')
        exogenous_variable_index=length(exonames)+1;
    else
        disp([ type '_analysis:: ' exo ' is not a declared exogenous variable!'])
        return
    end
end

if (isoctave && octave_ver_less_than('6')) || (~isoctave && matlab_ver_less_than('8.1'))
    [observable_pos_requested_vars,index_subset,index_observables]=intersect_stable(var_list,options_.varobs);
else
    [observable_pos_requested_vars,index_subset,index_observables]=intersect(var_list,options_.varobs,'stable');
end
matrix_pos=strmatch(endo, var_list(index_subset),'exact');
name_1 = endo;
name_2 = exo;
name = [ name_1 '.' name_2 ];

if isfield(oo_, [ TYPE 'TheoreticalMoments' ])
    temporary_structure = oo_.([TYPE 'TheoreticalMoments']);
    if isfield(temporary_structure,'dsge')
        temporary_structure = oo_.([TYPE 'TheoreticalMoments']).dsge;
        if isfield(temporary_structure,'ConditionalVarianceDecompositionME')
            temporary_structure = oo_.([TYPE 'TheoreticalMoments']).dsge.ConditionalVarianceDecompositionME.Mean;
            if isfield(temporary_structure,name)
                if sum(Steps-temporary_structure.(name)(1,:)) == 0
                    % Nothing (new) to do here...
                    return
                end
            end
        end
    end
end

ListOfFiles = dir([ PATH  fname '_' TYPE 'ConditionalVarianceDecompME*.mat']);
i1 = 1; tmp = zeros(NumberOfSimulations,length(Steps));
for file = 1:length(ListOfFiles)
    load([ PATH ListOfFiles(file).name ]);
    % 4D-array (endovar,time,exovar,simul)
    i2 = i1 + size(Conditional_decomposition_array_ME,4) - 1;
    tmp(i1:i2,:) = transpose(dynare_squeeze(Conditional_decomposition_array_ME(matrix_pos,:,exogenous_variable_index,:)));
    i1 = i2+1;
end

p_mean = NaN(1,length(Steps));
p_median = NaN(1,length(Steps));
p_variance = NaN(1,length(Steps));
p_deciles = NaN(9,length(Steps));
if options_.estimation.moments_posterior_density.indicator
    p_density = NaN(2^9,2,length(Steps));
end
p_hpdinf = NaN(1,length(Steps));
p_hpdsup = NaN(1,length(Steps));
for i=1:length(Steps)
    if options_.estimation.moments_posterior_density.indicator
        [pp_mean, pp_median, pp_var, hpd_interval, pp_deciles, pp_density] = ...
            posterior_moments(tmp(:,i),1,mh_conf_sig);
        p_density(:,:,i) = pp_density;
    else
        [pp_mean, pp_median, pp_var, hpd_interval, pp_deciles] = ...
            posterior_moments(tmp(:,i),0,mh_conf_sig);
    end
    p_mean(i) = pp_mean;
    p_median(i) = pp_median;
    p_variance(i) = pp_var;
    p_deciles(:,i) = pp_deciles;
    p_hpdinf(i) = hpd_interval(1);
    p_hpdsup(i) = hpd_interval(2);
end

FirstField = sprintf('%sTheoreticalMoments', TYPE);

oo_.(FirstField).dsge.ConditionalVarianceDecompositionME.Steps = Steps;
oo_.(FirstField).dsge.ConditionalVarianceDecompositionME.Mean.(name_1).(name_2) = p_mean;
oo_.(FirstField).dsge.ConditionalVarianceDecompositionME.Median.(name_1).(name_2) = p_median;
oo_.(FirstField).dsge.ConditionalVarianceDecompositionME.Variance.(name_1).(name_2) = p_variance;
oo_.(FirstField).dsge.ConditionalVarianceDecompositionME.HPDinf.(name_1).(name_2) = p_hpdinf;
oo_.(FirstField).dsge.ConditionalVarianceDecompositionME.HPDsup.(name_1).(name_2) = p_hpdsup;
oo_.(FirstField).dsge.ConditionalVarianceDecompositionME.deciles.(name_1).(name_2)  = p_deciles;
if options_.estimation.moments_posterior_density.indicator
    oo_.(FirstField).dsge.ConditionalVarianceDecompositionME.density.(name_1).(name_2) = p_density;
end