1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
function oo_ = ...
conditional_variance_decomposition_ME_mc_analysis(NumberOfSimulations, type, dname, fname, Steps, exonames, exo, var_list, endo, mh_conf_sig, oo_,options_)
% This function analyses the (posterior or prior) distribution of the
% endogenous variables' conditional variance decomposition with measurement error.
%
% INPUTS
% NumberOfSimulations [integer] scalar, number of simulations.
% type [string] 'prior' or 'posterior'
% dname [string] directory name where to save
% fname [string] name of the mod-file
% Steps [integers] horizons at which to conduct decomposition
% exonames [string] (n_exo*char_length) character array with names of exogenous variables
% exo [string] name of current exogenous
% variable
% var_list [string] (n_endo*char_length) character array with name
% of endogenous variables
% endo [integer] Current endogenous variable
% mh_conf_sig [double] 2 by 1 vector with upper
% and lower bound of HPD intervals
% oo_ [structure] Dynare structure where the results are saved.
%
% OUTPUTS
% oo_ [structure] Dynare structure where the results are saved.
% Copyright (C) 2017-2018 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
if strcmpi(type,'posterior')
TYPE = 'Posterior';
PATH = [dname '/metropolis/'];
else
TYPE = 'Prior';
PATH = [dname '/prior/moments/'];
end
endogenous_variable_index = check_name(var_list, endo);
if isempty(endogenous_variable_index)
disp([ type '_analysis:: Can''t find ' endo '!'])
return
end
exogenous_variable_index = check_name(exonames,exo);
if isempty(exogenous_variable_index)
if isequal(exo,'ME')
exogenous_variable_index=length(exonames)+1;
else
disp([ type '_analysis:: ' exo ' is not a declared exogenous variable!'])
return
end
end
if (isoctave && octave_ver_less_than('6')) || (~isoctave && matlab_ver_less_than('8.1'))
[observable_pos_requested_vars,index_subset,index_observables]=intersect_stable(var_list,options_.varobs);
else
[observable_pos_requested_vars,index_subset,index_observables]=intersect(var_list,options_.varobs,'stable');
end
matrix_pos=strmatch(endo, var_list(index_subset),'exact');
name_1 = endo;
name_2 = exo;
name = [ name_1 '.' name_2 ];
if isfield(oo_, [ TYPE 'TheoreticalMoments' ])
temporary_structure = oo_.([TYPE 'TheoreticalMoments']);
if isfield(temporary_structure,'dsge')
temporary_structure = oo_.([TYPE 'TheoreticalMoments']).dsge;
if isfield(temporary_structure,'ConditionalVarianceDecompositionME')
temporary_structure = oo_.([TYPE 'TheoreticalMoments']).dsge.ConditionalVarianceDecompositionME.Mean;
if isfield(temporary_structure,name)
if sum(Steps-temporary_structure.(name)(1,:)) == 0
% Nothing (new) to do here...
return
end
end
end
end
end
ListOfFiles = dir([ PATH fname '_' TYPE 'ConditionalVarianceDecompME*.mat']);
i1 = 1; tmp = zeros(NumberOfSimulations,length(Steps));
for file = 1:length(ListOfFiles)
load([ PATH ListOfFiles(file).name ]);
% 4D-array (endovar,time,exovar,simul)
i2 = i1 + size(Conditional_decomposition_array_ME,4) - 1;
tmp(i1:i2,:) = transpose(dynare_squeeze(Conditional_decomposition_array_ME(matrix_pos,:,exogenous_variable_index,:)));
i1 = i2+1;
end
p_mean = NaN(1,length(Steps));
p_median = NaN(1,length(Steps));
p_variance = NaN(1,length(Steps));
p_deciles = NaN(9,length(Steps));
if options_.estimation.moments_posterior_density.indicator
p_density = NaN(2^9,2,length(Steps));
end
p_hpdinf = NaN(1,length(Steps));
p_hpdsup = NaN(1,length(Steps));
for i=1:length(Steps)
if options_.estimation.moments_posterior_density.indicator
[pp_mean, pp_median, pp_var, hpd_interval, pp_deciles, pp_density] = ...
posterior_moments(tmp(:,i),1,mh_conf_sig);
p_density(:,:,i) = pp_density;
else
[pp_mean, pp_median, pp_var, hpd_interval, pp_deciles] = ...
posterior_moments(tmp(:,i),0,mh_conf_sig);
end
p_mean(i) = pp_mean;
p_median(i) = pp_median;
p_variance(i) = pp_var;
p_deciles(:,i) = pp_deciles;
p_hpdinf(i) = hpd_interval(1);
p_hpdsup(i) = hpd_interval(2);
end
FirstField = sprintf('%sTheoreticalMoments', TYPE);
oo_.(FirstField).dsge.ConditionalVarianceDecompositionME.Steps = Steps;
oo_.(FirstField).dsge.ConditionalVarianceDecompositionME.Mean.(name_1).(name_2) = p_mean;
oo_.(FirstField).dsge.ConditionalVarianceDecompositionME.Median.(name_1).(name_2) = p_median;
oo_.(FirstField).dsge.ConditionalVarianceDecompositionME.Variance.(name_1).(name_2) = p_variance;
oo_.(FirstField).dsge.ConditionalVarianceDecompositionME.HPDinf.(name_1).(name_2) = p_hpdinf;
oo_.(FirstField).dsge.ConditionalVarianceDecompositionME.HPDsup.(name_1).(name_2) = p_hpdsup;
oo_.(FirstField).dsge.ConditionalVarianceDecompositionME.deciles.(name_1).(name_2) = p_deciles;
if options_.estimation.moments_posterior_density.indicator
oo_.(FirstField).dsge.ConditionalVarianceDecompositionME.density.(name_1).(name_2) = p_density;
end
|