File: McMCDiagnostics_core.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (146 lines) | stat: -rw-r--r-- 6,744 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
function myoutput = McMCDiagnostics_core(myinputs,fpar,npar,whoiam, ThisMatlab)
% function myoutput = McMCDiagnostics_core(myinputs,fpar,npar,whoiam, ThisMatlab)
% Computes the Brooks/Gelman (1998) convergence diagnostics, both the
% parameteric and the non-parameteric versions
%
% PARALLEL CONTEXT
% Core functionality for MCMC Diagnostics, which can be parallelized.
% See also the comment in posterior_sampler_core.m funtion.
%
%
% INPUTS
%   See See the comment in posterior_sampler_core.m funtion.

% OUTPUTS
% o myoutput  [struc]
%   Contains:
%       - UDIAG [by 6] double   1st column: length of total sequence interval
%                               2nd column: sum of length of within sequence intervals; used to compute mean length of within sequence intervals
%                               3nd column: within sequence variance
%                               4nd column: sum of within sequence variances; used to compute mean within sequence variances
%                               5nd column: within sequence kurtosis
%                               6nd column: sum of within sequence kurtoses; used to compute mean within sequence kurtoses
%               Averaging to compute mean moments is done in
%               McMCDiagnostics
%
% ALGORITHM
%   Computes part of the convergence diagnostics, the rest is computed in McMCDiagnostics.m .
%   The methodology and terminology is based on: Brooks/Gelman (1998): General
%   Methods for Monitoring Convergence of Iterative Simulations, Journal of Computational
%   and Graphical Statistics, Volume 7, Number 4, Pages 434-455
%
%
% SPECIAL REQUIREMENTS.
%   None.

% Copyright (C) 2006-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

if nargin<4
    whoiam=0;
end

% Reshape 'myinputs' for local computation.
% In order to avoid confusion in the name space, the instruction struct2local(myinputs) is replaced by:

MetropolisFolder=myinputs.MetropolisFolder;%myinputs.MetropolisFolder;
nblck=myinputs.nblck;
NumberOfMcFilesPerBlock=myinputs.NumberOfMcFilesPerBlock;
Origin=myinputs.Origin;
StepSize=myinputs.StepSize;
mh_drop=myinputs.mh_drop;
NumberOfDraws=myinputs.NumberOfDraws;
NumberOfLines=myinputs.NumberOfLines;
time=myinputs.time;
M_=myinputs.M_;

if whoiam
    Parallel=myinputs.Parallel;
end
if ~exist('MetropolisFolder')
    MetropolisFolder = CheckPath('metropolis',M_.dname);
end

ALPHA = 0.2; % percentile for non-parametric statistic
tmp = zeros(NumberOfDraws*nblck,3);
UDIAG = zeros(NumberOfLines,6,npar-fpar+1);

if whoiam
    waitbarString = ['Please wait... McMCDiagnostics (' int2str(fpar) 'of' int2str(npar) ')...'];
    if Parallel(ThisMatlab).Local
        waitbarTitle=['Local '];
    else
        waitbarTitle=[Parallel(ThisMatlab).ComputerName];
    end
    fMessageStatus(0,whoiam,waitbarString, waitbarTitle, Parallel(ThisMatlab));
end
for j=fpar:npar
    if isoctave
        if (whoiam==0)
            printf('    Parameter %d...  ',j);
        end
    else
        fprintf('    Parameter %d...  ',j);
    end
    for b = 1:nblck %load draws from different chains into 1 matrix
        startline = 0;
        for n = 1:NumberOfMcFilesPerBlock
            load([MetropolisFolder '/' M_.fname '_mh',int2str(n),'_blck' int2str(b) '.mat'],'x2');
            nx2 = size(x2,1);
            tmp((b-1)*NumberOfDraws+startline+(1:nx2),1) = x2(:,j);
            startline = startline + nx2;
        end
    end
    tmp(:,2) = kron(transpose(1:nblck),ones(NumberOfDraws,1)); %add info about chain associated with draw into 2nd column
    tmp(:,3) = kron(ones(nblck,1),time'); %add timeline for draws to third column
    tmp = sortrows(tmp,1); %sort draws according to size for non-parametric percentile computation
    window_iter   = 0;
    for iter  = Origin:StepSize:NumberOfDraws %begin of window
        window_iter = window_iter+1;
        linea = ceil(mh_drop*iter);         %compute first non-discarded draw; drops fraction of sample at each iteration for computational efficiency, see Brooks/Gelman (1998), p.438
        n     = iter-linea+1;               %number of draws from each block in current batch
        cinf  = round(n*ALPHA/2);           %lower bound for alpha percentile of within series
        csup  = round(n*(1-ALPHA/2));       %upper bound for alpha percentile of within series
        CINF  = round(nblck*n*ALPHA/2);     %lower bound for alpha percentile of pooled series
        CSUP  = round(nblck*n*(1-ALPHA/2)); %upper bound for alpha percentile of pooled series
        temp  = tmp(find((tmp(:,3)>=linea) & (tmp(:,3)<=iter)),1:2);    %extract pooled draws in current batch
        UDIAG(window_iter,1,j-fpar+1) = temp(CSUP,1)-temp(CINF,1);      %length of total sequence interval
        pooled_mean = mean(temp(:,1));      % Pooled mean.
        UDIAG(window_iter,3,j-fpar+1) = sum((temp(:,1)-pooled_mean).^2)/(nblck*n-1);        %within sequence variance
        UDIAG(window_iter,5,j-fpar+1) = sum(abs(temp(:,1)-pooled_mean).^3)/(nblck*n-1);     %within sequence third moment
        for i=1:nblck
            pmet = temp(find(temp(:,2)==i));
            UDIAG(window_iter,2,j-fpar+1) = UDIAG(window_iter,2,j-fpar+1) + pmet(csup,1)-pmet(cinf,1); %sum of length of within sequence intervals; used to compute mean length of within sequence intervals
            within_mean = mean(pmet,1); %% Within mean in current chain.
            UDIAG(window_iter,4,j-fpar+1) = UDIAG(window_iter,4,j-fpar+1) + sum((pmet(:,1)-within_mean).^2)/(n-1); %sum of within sequence variances; used to compute mean within sequence variances
            UDIAG(window_iter,6,j-fpar+1) = UDIAG(window_iter,6,j-fpar+1) + sum(abs(pmet(:,1)-within_mean).^3)/(n-1); %sum of within sequence kurtoses; used to compute mean within sequence kurtoses
        end
    end
    if isoctave
        if (whoiam==0)
            printf('Done! \n');
        end
    else
        fprintf('Done! \n');
    end
    if whoiam
        waitbarString = [ 'Parameter ' int2str(j) '/' int2str(npar) ' done.'];
        fMessageStatus((j-fpar+1)/(npar-fpar+1),whoiam,waitbarString, waitbarTitle, Parallel(ThisMatlab))
    end
end

myoutput.UDIAG = UDIAG;