1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
function oo_ = correlation_mc_analysis(SampleSize,type,dname,fname,vartan,nvar,var1,var2,nar,mh_conf_sig,oo_,M_,options_)
% This function analyses the (posterior or prior) distribution of the
% endogenous variables correlation function.
% Copyright (C) 2008-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
if strcmpi(type,'posterior')
TYPE = 'Posterior';
PATH = [dname '/metropolis/'];
else
TYPE = 'Prior';
PATH = [dname '/prior/moments/'];
end
indx1 = check_name(vartan,var1);
if isempty(indx1)
disp([ type '_analysis:: ' var1 ' is not a stationary endogenous variable!'])
return
end
if ~isempty(var2)
indx2 = check_name(vartan,var2);
if isempty(indx2)
disp([ type '_analysis:: ' var2 ' is not a stationary endogenous variable!'])
return
end
else
indx2 = indx1;
var2 = var1;
end
var1=deblank(var1);
var2=deblank(var2);
if isfield(oo_,[TYPE 'TheoreticalMoments'])
temporary_structure = oo_.([TYPE, 'TheoreticalMoments']);
if isfield(temporary_structure,'dsge')
temporary_structure = oo_.([TYPE, 'TheoreticalMoments']).dsge;
if isfield(temporary_structure,'correlation')
temporary_structure = oo_.([TYPE, 'TheoreticalMoments']).dsge.correlation.Mean;
if isfield(temporary_structure,deblank(var1))
temporary_structure_1 = oo_.([TYPE, 'TheoreticalMoments']).dsge.correlation.Mean.(var1);
if isfield(temporary_structure_1,deblank(var2))
temporary_structure_2 = temporary_structure_1.(var2);
l1 = length(temporary_structure_2);
if l1<nar
% INITIALIZATION:
oo_ = initialize_output_structure(var1,var2,nar,type,oo_);
delete([PATH fname '_' TYPE 'Correlations*'])
[nvar,vartan,NumberOfFiles] = ...
dsge_simulated_theoretical_correlation(SampleSize,nar,M_,options_,oo_,type);
else
if ~isnan(temporary_structure_2(nar))
%Nothing to do.
return
end
end
else
oo_ = initialize_output_structure(var1,var2,nar,TYPE,oo_,options_);
end
else
oo_ = initialize_output_structure(var1,var2,nar,TYPE,oo_,options_);
end
else
oo_ = initialize_output_structure(var1,var2,nar,TYPE,oo_,options_);
end
else
oo_ = initialize_output_structure(var1,var2,nar,TYPE,oo_,options_);
end
else
oo_ = initialize_output_structure(var1,var2,nar,TYPE,oo_,options_);
end
ListOfFiles = dir([ PATH fname '_' TYPE 'Correlations*.mat']);
i1 = 1; tmp = zeros(SampleSize,1);
for file = 1:length(ListOfFiles)
load([ PATH ListOfFiles(file).name ]);
i2 = i1 + rows(Correlation_array) - 1;
tmp(i1:i2) = Correlation_array(:,indx1,indx2,nar);
i1 = i2+1;
end
name = [ var1 '.' var2 ];
if options_.estimation.moments_posterior_density.indicator
[p_mean, p_median, p_var, hpd_interval, p_deciles, density] = ...
posterior_moments(tmp,1,mh_conf_sig);
else
[p_mean, p_median, p_var, hpd_interval, p_deciles] = ...
posterior_moments(tmp,0,mh_conf_sig);
end
if isfield(oo_,[ TYPE 'TheoreticalMoments'])
temporary_structure = oo_.([TYPE, 'TheoreticalMoments']);
if isfield(temporary_structure,'dsge')
temporary_structure = oo_.([TYPE, 'TheoreticalMoments']).dsge;
if isfield(temporary_structure,'correlation')
oo_ = fill_output_structure(var1,var2,TYPE,oo_,'Mean',nar,p_mean);
oo_ = fill_output_structure(var1,var2,TYPE,oo_,'Median',nar,p_median);
oo_ = fill_output_structure(var1,var2,TYPE,oo_,'Variance',nar,p_var);
oo_ = fill_output_structure(var1,var2,TYPE,oo_,'HPDinf',nar,hpd_interval(1));
oo_ = fill_output_structure(var1,var2,TYPE,oo_,'HPDsup',nar,hpd_interval(2));
oo_ = fill_output_structure(var1,var2,TYPE,oo_,'deciles',nar,p_deciles);
if options_.estimation.moments_posterior_density.indicator
oo_ = fill_output_structure(var1,var2,TYPE,oo_,'density',nar,density);
end
end
end
end
function oo_ = initialize_output_structure(var1,var2,nar,type,oo_,options_)
oo_.([type, 'TheoreticalMoments']).dsge.correlation.Mean.(var1).(var2) = NaN(nar,1);
oo_.([type, 'TheoreticalMoments']).dsge.correlation.Median.(var1).(var2) = NaN(nar,1);
oo_.([type, 'TheoreticalMoments']).dsge.correlation.Variance.(var1).(var2) = NaN(nar,1);
oo_.([type, 'TheoreticalMoments']).dsge.correlation.HPDinf.(var1).(var2) = NaN(nar,1);
oo_.([type, 'TheoreticalMoments']).dsge.correlation.HPDsup.(var1).(var2) = NaN(nar,1);
oo_.([type, 'TheoreticalMoments']).dsge.correlation.deciles.(var1).(var2) = cell(nar,1);
if options_.estimation.moments_posterior_density.indicator
oo_.([type, 'TheoreticalMoments']).dsge.correlation.density.(var1).(var2) = cell(nar,1);
end
for i=1:nar
if options_.estimation.moments_posterior_density.indicator
oo_.([type, 'TheoreticalMoments']).dsge.correlation.density.(var1).(var2)(i,1) = {NaN};
end
oo_.([type, 'TheoreticalMoments']).dsge.correlation.deciles.(var1).(var2)(i,1) = {NaN};
end
function oo_ = fill_output_structure(var1,var2,type,oo_,moment,lag,result)
switch moment
case {'Mean','Median','Variance','HPDinf','HPDsup'}
oo_.([type, 'TheoreticalMoments']).dsge.correlation.(moment).(var1).(var2)(lag,1) = result;
case {'deciles','density'}
oo_.([type, 'TheoreticalMoments']).dsge.correlation.(moment).(var1).(var2)(lag,1) = {result};
otherwise
disp('fill_output_structure:: Unknown field!')
end
|