File: correlation_mc_analysis.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (146 lines) | stat: -rw-r--r-- 6,417 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
function oo_ = correlation_mc_analysis(SampleSize,type,dname,fname,vartan,nvar,var1,var2,nar,mh_conf_sig,oo_,M_,options_)
% This function analyses the (posterior or prior) distribution of the
% endogenous variables correlation function.

% Copyright (C) 2008-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

if strcmpi(type,'posterior')
    TYPE = 'Posterior';
    PATH = [dname '/metropolis/'];
else
    TYPE = 'Prior';
    PATH = [dname '/prior/moments/'];
end

indx1 = check_name(vartan,var1);
if isempty(indx1)
    disp([ type '_analysis:: ' var1 ' is not a stationary endogenous variable!'])
    return
end
if ~isempty(var2)
    indx2 = check_name(vartan,var2);
    if isempty(indx2)
        disp([ type '_analysis:: ' var2 ' is not a stationary endogenous variable!'])
        return
    end
else
    indx2 = indx1;
    var2 = var1;
end

var1=deblank(var1);
var2=deblank(var2);

if isfield(oo_,[TYPE 'TheoreticalMoments'])
    temporary_structure = oo_.([TYPE, 'TheoreticalMoments']);
    if isfield(temporary_structure,'dsge')
        temporary_structure = oo_.([TYPE, 'TheoreticalMoments']).dsge;
        if isfield(temporary_structure,'correlation')
            temporary_structure = oo_.([TYPE, 'TheoreticalMoments']).dsge.correlation.Mean;
            if isfield(temporary_structure,deblank(var1))
                temporary_structure_1 = oo_.([TYPE, 'TheoreticalMoments']).dsge.correlation.Mean.(var1);
                if isfield(temporary_structure_1,deblank(var2))
                    temporary_structure_2 = temporary_structure_1.(var2);
                    l1 = length(temporary_structure_2);
                    if l1<nar
                        % INITIALIZATION:
                        oo_ = initialize_output_structure(var1,var2,nar,type,oo_);
                        delete([PATH fname '_' TYPE 'Correlations*'])
                        [nvar,vartan,NumberOfFiles] = ...
                            dsge_simulated_theoretical_correlation(SampleSize,nar,M_,options_,oo_,type);
                    else
                        if ~isnan(temporary_structure_2(nar))
                            %Nothing to do.
                            return
                        end
                    end
                else
                    oo_ = initialize_output_structure(var1,var2,nar,TYPE,oo_,options_);
                end
            else
                oo_ = initialize_output_structure(var1,var2,nar,TYPE,oo_,options_);
            end
        else
            oo_ = initialize_output_structure(var1,var2,nar,TYPE,oo_,options_);
        end
    else
        oo_ = initialize_output_structure(var1,var2,nar,TYPE,oo_,options_);
    end
else
    oo_ = initialize_output_structure(var1,var2,nar,TYPE,oo_,options_);
end
ListOfFiles = dir([ PATH  fname '_' TYPE 'Correlations*.mat']);
i1 = 1; tmp = zeros(SampleSize,1);
for file = 1:length(ListOfFiles)
    load([ PATH  ListOfFiles(file).name ]);
    i2 = i1 + rows(Correlation_array) - 1;
    tmp(i1:i2) = Correlation_array(:,indx1,indx2,nar);
    i1 = i2+1;
end
name = [ var1 '.' var2 ];
if options_.estimation.moments_posterior_density.indicator
    [p_mean, p_median, p_var, hpd_interval, p_deciles, density] = ...
        posterior_moments(tmp,1,mh_conf_sig);
else
    [p_mean, p_median, p_var, hpd_interval, p_deciles] = ...
        posterior_moments(tmp,0,mh_conf_sig);
end
if isfield(oo_,[ TYPE 'TheoreticalMoments'])
    temporary_structure = oo_.([TYPE, 'TheoreticalMoments']);
    if isfield(temporary_structure,'dsge')
        temporary_structure = oo_.([TYPE, 'TheoreticalMoments']).dsge;
        if isfield(temporary_structure,'correlation')
            oo_ = fill_output_structure(var1,var2,TYPE,oo_,'Mean',nar,p_mean);
            oo_ = fill_output_structure(var1,var2,TYPE,oo_,'Median',nar,p_median);
            oo_ = fill_output_structure(var1,var2,TYPE,oo_,'Variance',nar,p_var);
            oo_ = fill_output_structure(var1,var2,TYPE,oo_,'HPDinf',nar,hpd_interval(1));
            oo_ = fill_output_structure(var1,var2,TYPE,oo_,'HPDsup',nar,hpd_interval(2));
            oo_ = fill_output_structure(var1,var2,TYPE,oo_,'deciles',nar,p_deciles);
            if options_.estimation.moments_posterior_density.indicator
                oo_ = fill_output_structure(var1,var2,TYPE,oo_,'density',nar,density);
            end
        end
    end
end

function oo_ = initialize_output_structure(var1,var2,nar,type,oo_,options_)
oo_.([type, 'TheoreticalMoments']).dsge.correlation.Mean.(var1).(var2) = NaN(nar,1);
oo_.([type, 'TheoreticalMoments']).dsge.correlation.Median.(var1).(var2) = NaN(nar,1);
oo_.([type, 'TheoreticalMoments']).dsge.correlation.Variance.(var1).(var2) = NaN(nar,1);
oo_.([type, 'TheoreticalMoments']).dsge.correlation.HPDinf.(var1).(var2) = NaN(nar,1);
oo_.([type, 'TheoreticalMoments']).dsge.correlation.HPDsup.(var1).(var2) = NaN(nar,1);
oo_.([type, 'TheoreticalMoments']).dsge.correlation.deciles.(var1).(var2) = cell(nar,1);
if options_.estimation.moments_posterior_density.indicator
    oo_.([type, 'TheoreticalMoments']).dsge.correlation.density.(var1).(var2) = cell(nar,1);
end
for i=1:nar
    if options_.estimation.moments_posterior_density.indicator
        oo_.([type, 'TheoreticalMoments']).dsge.correlation.density.(var1).(var2)(i,1) = {NaN};
    end
    oo_.([type, 'TheoreticalMoments']).dsge.correlation.deciles.(var1).(var2)(i,1) = {NaN};
end

function oo_ = fill_output_structure(var1,var2,type,oo_,moment,lag,result)
switch moment
  case {'Mean','Median','Variance','HPDinf','HPDsup'}
    oo_.([type,  'TheoreticalMoments']).dsge.correlation.(moment).(var1).(var2)(lag,1) = result;
  case {'deciles','density'}
    oo_.([type, 'TheoreticalMoments']).dsge.correlation.(moment).(var1).(var2)(lag,1) = {result};
  otherwise
    disp('fill_output_structure:: Unknown field!')
end