File: covariance_mc_analysis.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (141 lines) | stat: -rw-r--r-- 6,623 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
function oo_ = covariance_mc_analysis(NumberOfSimulations,type,dname,fname,vartan,nvar,var1,var2,mh_conf_sig,oo_,options_)
% This function analyses the (posterior or prior) distribution of the
% endogenous variables' covariance matrix.
%
% INPUTS
%   NumberOfSimulations     [integer]           scalar, number of simulations.
%   type                    [string]            'prior' or 'posterior'
%   dname                   [string]            directory name where to save
%   fname                   [string]            name of the mod-file
%   vartan                  [char]              array of characters (with nvar rows).
%   nvar                    [integer]           nvar is the number of stationary variables.
%   var1                    [string]            name of the first variable
%   var2                    [string]            name of the second variable
%   mh_conf_sig             [double]            2 by 1 vector with upper
%                                               and lower bound of HPD intervals
%   oo_                     [structure]         Dynare structure where the results are saved.
%   options_                [structure]         Dynare options structure
%
% OUTPUTS
%   oo_                     [structure]        Dynare structure where the results are saved.

% Copyright (C) 2008-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

if strcmpi(type,'posterior')
    TYPE = 'Posterior';
    PATH = [dname '/metropolis/'];
else
    TYPE = 'Prior';
    PATH = [dname '/prior/moments/'];
end

indx1 = check_name(vartan,var1);
if isempty(indx1)
    disp([ type '_analysis:: ' var1 ' is not a stationary endogenous variable!'])
    return
end
if ~isempty(var2)
    indx2 = check_name(vartan,var2);
    if isempty(indx2)
        disp([ type '_analysis:: ' var2 ' is not a stationary endogenous variable!'])
        return
    end
else
    indx2 = indx1;
    var2 = var1;
end

var1=deblank(var1);
var2=deblank(var2);

if isfield(oo_,[ TYPE 'TheoreticalMoments'])
    temporary_structure = oo_.([TYPE, 'TheoreticalMoments']);
    if isfield(temporary_structure,'dsge')
        temporary_structure = oo_.([TYPE, 'TheoreticalMoments']).dsge;
        if isfield(temporary_structure,'covariance')
            temporary_structure = oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.Mean;
            if isfield(temporary_structure,var1)
                temporary_structure_1 = oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.Mean.(var1);
                if isfield(temporary_structure_1,var2)
                    % Nothing to do (the covariance matrix is symmetric!).
                    return
                end
            else
                if isfield(temporary_structure,var2)
                    temporary_structure_2 = oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.Mean.(var2);
                    if isfield(temporary_structure_2,var1)
                        % Nothing to do (the covariance matrix is symmetric!).
                        return
                    end
                end
            end
        end
    end
end

ListOfFiles = dir([ PATH  fname '_' TYPE '2ndOrderMoments*.mat']);
i1 = 1; tmp = zeros(NumberOfSimulations,1);
if options_.contemporaneous_correlation
    tmp_corr_mat = zeros(NumberOfSimulations,1);
    cov_pos=symmetric_matrix_index(indx1,indx2,nvar);
    var_pos_1=symmetric_matrix_index(indx1,indx1,nvar);
    var_pos_2=symmetric_matrix_index(indx2,indx2,nvar);
end
for file = 1:length(ListOfFiles)
    load([ PATH ListOfFiles(file).name ]);
    i2 = i1 + rows(Covariance_matrix) - 1;
    tmp(i1:i2) = Covariance_matrix(:,symmetric_matrix_index(indx1,indx2,nvar));
    if options_.contemporaneous_correlation
        temp=Covariance_matrix(:,cov_pos)./(sqrt(Covariance_matrix(:,var_pos_1)).*sqrt(Covariance_matrix(:,var_pos_2)));
        temp(Covariance_matrix(:,cov_pos)==0)=0; %filter out 0 correlations that would result in 0/0
        tmp_corr_mat(i1:i2)=temp;
    end
    i1 = i2+1;
end

if options_.estimation.moments_posterior_density.indicator
    [p_mean, p_median, p_var, hpd_interval, p_deciles, density] = ...
        posterior_moments(tmp,1,mh_conf_sig);
    oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.density.(var1).(var2) = density;
else
    [p_mean, p_median, p_var, hpd_interval, p_deciles] = ...
        posterior_moments(tmp,0,mh_conf_sig);
end
oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.Mean.(var1).(var2) = p_mean;
oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.Median.(var1).(var2) = p_median;
oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.Variance.(var1).(var2) = p_var;
oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.HPDinf.(var1).(var2) = hpd_interval(1);
oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.HPDsup.(var1).(var2) = hpd_interval(2);
oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.deciles.(var1).(var2) = p_deciles;

if options_.contemporaneous_correlation
    if options_.estimation.moments_posterior_density.indicator
        [p_mean, p_median, p_var, hpd_interval, p_deciles, density] = ...
            posterior_moments(tmp_corr_mat,1,mh_conf_sig);
        oo_.([TYPE, 'TheoreticalMoments']).dsge.contemporeaneous_correlation.density.(var1).(var2) = density;
    else
        [p_mean, p_median, p_var, hpd_interval, p_deciles] = ...
            posterior_moments(tmp_corr_mat,0,mh_conf_sig);
    end
    oo_.([TYPE, 'TheoreticalMoments']).dsge.contemporeaneous_correlation.Mean.(var1).(var2) = p_mean;
    oo_.([TYPE, 'TheoreticalMoments']).dsge.contemporeaneous_correlation.Median.(var1).(var2) = p_median;
    oo_.([TYPE, 'TheoreticalMoments']).dsge.contemporeaneous_correlation.Variance.(var1).(var2) = p_var;
    oo_.([TYPE, 'TheoreticalMoments']).dsge.contemporeaneous_correlation.HPDinf.(var1).(var2) = hpd_interval(1);
    oo_.([TYPE, 'TheoreticalMoments']).dsge.contemporeaneous_correlation.HPDsup.(var1).(var2) = hpd_interval(2);
    oo_.([TYPE, 'TheoreticalMoments']).dsge.contemporeaneous_correlation.deciles.(var1).(var2) = p_deciles;
end