1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
function oo_ = covariance_mc_analysis(NumberOfSimulations,type,dname,fname,vartan,nvar,var1,var2,mh_conf_sig,oo_,options_)
% This function analyses the (posterior or prior) distribution of the
% endogenous variables' covariance matrix.
%
% INPUTS
% NumberOfSimulations [integer] scalar, number of simulations.
% type [string] 'prior' or 'posterior'
% dname [string] directory name where to save
% fname [string] name of the mod-file
% vartan [char] array of characters (with nvar rows).
% nvar [integer] nvar is the number of stationary variables.
% var1 [string] name of the first variable
% var2 [string] name of the second variable
% mh_conf_sig [double] 2 by 1 vector with upper
% and lower bound of HPD intervals
% oo_ [structure] Dynare structure where the results are saved.
% options_ [structure] Dynare options structure
%
% OUTPUTS
% oo_ [structure] Dynare structure where the results are saved.
% Copyright (C) 2008-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
if strcmpi(type,'posterior')
TYPE = 'Posterior';
PATH = [dname '/metropolis/'];
else
TYPE = 'Prior';
PATH = [dname '/prior/moments/'];
end
indx1 = check_name(vartan,var1);
if isempty(indx1)
disp([ type '_analysis:: ' var1 ' is not a stationary endogenous variable!'])
return
end
if ~isempty(var2)
indx2 = check_name(vartan,var2);
if isempty(indx2)
disp([ type '_analysis:: ' var2 ' is not a stationary endogenous variable!'])
return
end
else
indx2 = indx1;
var2 = var1;
end
var1=deblank(var1);
var2=deblank(var2);
if isfield(oo_,[ TYPE 'TheoreticalMoments'])
temporary_structure = oo_.([TYPE, 'TheoreticalMoments']);
if isfield(temporary_structure,'dsge')
temporary_structure = oo_.([TYPE, 'TheoreticalMoments']).dsge;
if isfield(temporary_structure,'covariance')
temporary_structure = oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.Mean;
if isfield(temporary_structure,var1)
temporary_structure_1 = oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.Mean.(var1);
if isfield(temporary_structure_1,var2)
% Nothing to do (the covariance matrix is symmetric!).
return
end
else
if isfield(temporary_structure,var2)
temporary_structure_2 = oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.Mean.(var2);
if isfield(temporary_structure_2,var1)
% Nothing to do (the covariance matrix is symmetric!).
return
end
end
end
end
end
end
ListOfFiles = dir([ PATH fname '_' TYPE '2ndOrderMoments*.mat']);
i1 = 1; tmp = zeros(NumberOfSimulations,1);
if options_.contemporaneous_correlation
tmp_corr_mat = zeros(NumberOfSimulations,1);
cov_pos=symmetric_matrix_index(indx1,indx2,nvar);
var_pos_1=symmetric_matrix_index(indx1,indx1,nvar);
var_pos_2=symmetric_matrix_index(indx2,indx2,nvar);
end
for file = 1:length(ListOfFiles)
load([ PATH ListOfFiles(file).name ]);
i2 = i1 + rows(Covariance_matrix) - 1;
tmp(i1:i2) = Covariance_matrix(:,symmetric_matrix_index(indx1,indx2,nvar));
if options_.contemporaneous_correlation
temp=Covariance_matrix(:,cov_pos)./(sqrt(Covariance_matrix(:,var_pos_1)).*sqrt(Covariance_matrix(:,var_pos_2)));
temp(Covariance_matrix(:,cov_pos)==0)=0; %filter out 0 correlations that would result in 0/0
tmp_corr_mat(i1:i2)=temp;
end
i1 = i2+1;
end
if options_.estimation.moments_posterior_density.indicator
[p_mean, p_median, p_var, hpd_interval, p_deciles, density] = ...
posterior_moments(tmp,1,mh_conf_sig);
oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.density.(var1).(var2) = density;
else
[p_mean, p_median, p_var, hpd_interval, p_deciles] = ...
posterior_moments(tmp,0,mh_conf_sig);
end
oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.Mean.(var1).(var2) = p_mean;
oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.Median.(var1).(var2) = p_median;
oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.Variance.(var1).(var2) = p_var;
oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.HPDinf.(var1).(var2) = hpd_interval(1);
oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.HPDsup.(var1).(var2) = hpd_interval(2);
oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.deciles.(var1).(var2) = p_deciles;
if options_.contemporaneous_correlation
if options_.estimation.moments_posterior_density.indicator
[p_mean, p_median, p_var, hpd_interval, p_deciles, density] = ...
posterior_moments(tmp_corr_mat,1,mh_conf_sig);
oo_.([TYPE, 'TheoreticalMoments']).dsge.contemporeaneous_correlation.density.(var1).(var2) = density;
else
[p_mean, p_median, p_var, hpd_interval, p_deciles] = ...
posterior_moments(tmp_corr_mat,0,mh_conf_sig);
end
oo_.([TYPE, 'TheoreticalMoments']).dsge.contemporeaneous_correlation.Mean.(var1).(var2) = p_mean;
oo_.([TYPE, 'TheoreticalMoments']).dsge.contemporeaneous_correlation.Median.(var1).(var2) = p_median;
oo_.([TYPE, 'TheoreticalMoments']).dsge.contemporeaneous_correlation.Variance.(var1).(var2) = p_var;
oo_.([TYPE, 'TheoreticalMoments']).dsge.contemporeaneous_correlation.HPDinf.(var1).(var2) = hpd_interval(1);
oo_.([TYPE, 'TheoreticalMoments']).dsge.contemporeaneous_correlation.HPDsup.(var1).(var2) = hpd_interval(2);
oo_.([TYPE, 'TheoreticalMoments']).dsge.contemporeaneous_correlation.deciles.(var1).(var2) = p_deciles;
end
|