1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
|
function options_ = default_option_values(M_)
%function default_option_values()
% Returns structure containing the options for Dynare commands and their
% default values
%
% INPUTS
% M_ [structure] Model definition
%
% OUTPUTS
% options [structure] Command options
%
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 2018-2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
options_.datafile = '';
options_.dirname = M_.fname;
options_.dataset = [];
options_.verbosity = 1;
options_.terminal_condition = 0;
options_.rplottype = 0;
options_.smpl = 0;
options_.dynatol.f = 1e-5;
options_.dynatol.x = 1e-5;
options_.slowc = 1;
options_.timing = 0;
options_.gstep = ones(2,1);
options_.gstep(1) = 1e-2;
options_.gstep(2) = 1.0;
options_.scalv = 1;
options_.debug = false;
options_.initval_file = false;
options_.Schur_vec_tol = 1e-11; % used to find nonstationary variables in Schur decomposition of the
% transition matrix
options_.qz_criterium = [];
options_.qz_zero_threshold = 1e-6;
options_.lyapunov_complex_threshold = 1e-15;
options_.solve_tolf = eps^(1/3);
options_.solve_tolx = eps^(2/3);
options_.dr_display_tol=1e-6;
options_.minimal_workspace = false;
options_.dp.maxit = 3000;
options_.steady.maxit = 50;
options_.simul.maxit = 50;
options_.simul.robust_lin_solve = false;
options_.mode_check.status = false;
options_.mode_check.neighbourhood_size = .5;
options_.mode_check.symmetric_plots = true;
options_.mode_check.number_of_points = 20;
options_.mode_check.nolik = false;
options_.huge_number = 1e7;
% Default number of threads for parallelized mex files.
options_.threads.kronecker.sparse_hessian_times_B_kronecker_C = num_procs;
options_.threads.local_state_space_iteration_2 = 1;
options_.threads.local_state_space_iteration_k = 1;
options_.threads.perfect_foresight_problem = num_procs;
options_.threads.k_order_perturbation = max(1, num_procs/2);
% steady state
options_.jacobian_flag = true;
% steady state file
if exist(['+' M_.fname '/steadystate.m'],'file')
options_.steadystate_flag = 2;
elseif exist([M_.fname '_steadystate.m'],'file')
options_.steadystate_flag = 1;
else
options_.steadystate_flag = 0;
end
options_.steadystate_partial = [];
options_.steadystate.nocheck = false;
% subset of the estimated deep parameters
options_.ParamSubSet = 'None';
% bvar-dsge
options_.dsge_var = 0;
options_.dsge_varlag = 4;
% BVAR a la Sims
options_.bvar_replic = 2000;
options_.bvar_prior_tau = 3;
options_.bvar_prior_decay = 0.5;
options_.bvar_prior_lambda = 5;
options_.bvar_prior_mu = 2;
options_.bvar_prior_omega = 1;
options_.bvar_prior_flat = false;
options_.bvar_prior_train = 0;
options_.bvar.conf_sig = 0.6;
% Initialize the field that will contain the optimization algorigthm's options declared in the
% estimation command (if anny).
options_.optim_opt = [];
% Optimization algorithm [6] gmhmaxlik
gmhmaxlik.iterations = 3;
gmhmaxlik.number = 20000;
gmhmaxlik.nclimb = 200000;
gmhmaxlik.nscale = 200000;
gmhmaxlik.target = 1/3; % Target for the acceptance rate.
options_.gmhmaxlik = gmhmaxlik;
% Request user input.
options_.nointeractive = false;
% Graphics
options_.graphics.nrows = 3;
options_.graphics.ncols = 3;
options_.graphics.line_types = {'b-'};
options_.graphics.line_width = 1;
options_.graph_format = 'eps';
options_.nodisplay = false;
options_.nograph = false;
options_.no_graph.posterior = false;
options_.no_graph.shock_decomposition = false;
options_.no_graph.plot_shock_decomposition = false;
options_.XTick = [];
options_.XTickLabel = [];
options_.console_mode = false;
if isoctave
if sum(get(0,'screensize'))==4
options_.console_mode = true;
options_.nodisplay = true;
end
else
if isunix && (~usejava('jvm') || ~feature('ShowFigureWindows'))
options_.console_mode = true;
options_.nodisplay = true;
end
end
% IRFs & other stoch_simul output
options_.irf = 40;
options_.impulse_responses.plot_threshold=1e-10;
options_.zero_moments_tolerance=1e-10;
options_.relative_irf = false;
options_.ar = 5;
options_.hp_filter = 0;
options_.one_sided_hp_filter = 0;
options_.filtered_theoretical_moments_grid = 512;
options_.nodecomposition = false;
options_.nomoments = false;
options_.nocorr = false;
options_.periods = 0;
options_.noprint = false;
options_.SpectralDensity.trigger = false;
options_.SpectralDensity.plot = 1;
options_.SpectralDensity.cutoff = 150;
options_.SpectralDensity.sdl = 0.01;
options_.nofunctions = false;
options_.bandpass.indicator = false;
options_.bandpass.passband = [6; 32];
options_.bandpass.K=12;
options_.irf_opt.diagonal_only = false;
options_.irf_opt.stderr_multiples = false;
options_.irf_opt.irf_shock_graphtitles = {};
options_.irf_opt.irf_shocks = [];
% Extended path options
%
% Set debug flag
ep.debug = 0;
% Set memory flag
ep.memory = 0;
% Set verbose mode
ep.verbosity = 0;
% Set bytecode flag
ep.use_bytecode = 0;
% Initialization of the perfect foresight equilibrium paths
% * init=0, previous solution is used.
% * init=1, a path generated with the first order reduced form is used.
% * init=2, mix of cases 0 and 1.
ep.init = 0;
% Maximum number of iterations for the deterministic solver.
ep.maxit = 500;
% Number of periods for the perfect foresight model.
ep.periods = 200;
% Default step for increasing the number of periods if needed
ep.step = 50;
% Set check_stability flag
ep.check_stability = 0;
% Define last periods used to test if the solution is stable with respect to an increase in the number of periods.
ep.lp = 5;
% Define first periods used to test if the solution is stable with respect to an increase in the number of periods.
ep.fp = 2;
% Define the distribution for the structural innovations.
ep.innovation_distribution = 'gaussian';
% Set flag for the seed
ep.set_dynare_seed_to_default = 1;
% Set algorithm for the perfect foresight solver
ep.stack_solve_algo = 7;
ep.solve_algo = 9;
% Number of replications
ep.replic_nbr = 1;
% Parallel execution of replications
ep.parallel = false;
% Stochastic extended path related options.
ep.stochastic.IntegrationAlgorithm = 'Tensor-Gaussian-Quadrature'; % Other possible values are 'Stroud-Cubature-3' and 'Stroud-Cubature-5'
ep.stochastic.method = '';
ep.stochastic.algo = 0;
ep.stochastic.quadrature.ortpol = 'hermite';
ep.stochastic.order = 0;
ep.stochastic.quadrature.nodes = 5;
ep.stochastic.quadrature.pruned.status = 0;
ep.stochastic.quadrature.pruned.relative = 1e-5;
ep.stochastic.quadrature.pruned.level = 1e-5;
ep.stochastic.hybrid_order = 0;
% homotopic step in extended path simulations
ep.stochastic.homotopic_steps = true;
% Copy ep structure in options_ global structure
options_.ep = ep;
% Simulations of backward looking models options
%
bnlms.set_dynare_seed_to_default = 1;
bnlms.innovation_distribution = 'gaussian';
options_.bnlms = bnlms;
% Particle filter
%
% Default is that we do not use the non linear kalman filter
particle.status = false;
% How do we initialize the states?
particle.initialization = 1;
particle.initial_state_prior_std = .1;
% Set the default order of approximation of the model (perturbation).
particle.perturbation = 2;
% Set the default number of particles.
particle.number_of_particles = 5000;
% Set the default approximation order (Smolyak)
particle.smolyak_accuracy = 3;
% By default we don't use pruning
particle.pruning = 0;
% Set the Gaussian approximation method for particles distributions
particle.approximation_method = 'unscented';
% Set unscented parameters alpha, beta and kappa for gaussian approximation
particle.unscented.alpha = 1;
particle.unscented.beta = 2;
particle.unscented.kappa = 1;
% Configuration of resampling in case of particles
particle.resampling.status.systematic = true;
particle.resampling.status.none = false;
particle.resampling.status.generic = false;
particle.resampling.threshold = .5;
particle.resampling.method.kitagawa = true;
particle.resampling.method.smooth = false;
particle.resampling.method.stratified = false;
% Set default algorithm
particle.filter_algorithm = 'sis';
% Approximation of the proposal distribution
particle.proposal_approximation.cubature = false;
particle.proposal_approximation.unscented = true;
particle.proposal_approximation.montecarlo = false;
% Approximation of the particle distribution
particle.distribution_approximation.cubature = false;
particle.distribution_approximation.unscented = true;
particle.distribution_approximation.montecarlo = false;
% Number of partitions for the smoothed resampling method
particle.resampling.number_of_partitions = 200;
% Configuration of the mixture filters
%particle.mixture_method = 'particles' ;
% Size of the different mixtures
particle.mixture_state_variables = 5 ;
particle.mixture_structural_shocks = 1 ;
particle.mixture_measurement_shocks = 1 ;
% Online approach
particle.liu_west_delta = 0.99 ;
particle.liu_west_chol_sigma_bar = .01 ;
% Options for setting the weights in conditional particle filters.
particle.cpf_weights_method.amisanotristani = true;
particle.cpf_weights_method.murrayjonesparslow = false;
% Copy ep structure in options_ global structure
options_.particle = particle;
options_.rwgmh.init_scale = 1e-4 ;
options_.rwgmh.scale_chain = 1 ;
options_.rwgmh.scale_shock = 1e-5 ;
% TeX output
options_.TeX = false;
% Exel
options_.xls_sheet = 1; % Octave does not support the empty string, rather use first sheet
options_.xls_range = '';
% Prior draws
options_.prior_draws = 10000;
% Prior posterior function sampling draws
options_.sampling_draws = 500;
options_.forecast = 0;
options_.forecasts.conf_sig = 0.9;
options_.conditional_forecast.conf_sig = 0.9;
% Model
options_.linear = false;
% Deterministic simulation
options_.stack_solve_algo = 0;
options_.markowitz = 0.5;
options_.minimal_solving_periods = 1;
options_.endogenous_terminal_period = false;
options_.no_homotopy = false;
% Solution
options_.order = 2;
options_.pruning = false;
options_.solve_algo = 4;
options_.replic = 50;
options_.simul_replic = 1;
options_.drop = 100;
options_.aim_solver = false; % i.e. by default do not use G.Anderson's AIM solver, use mjdgges instead
options_.k_order_solver = false; % by default do not use k_order_perturbation but mjdgges
options_.partial_information = false;
options_.ACES_solver = false;
options_.conditional_variance_decomposition = [];
% Ramsey policy
options_.ramsey_policy = false;
options_.instruments = {};
options_.timeless = 0;
options_.ramsey.maxit = 500;
% estimation
options_.initial_period = NaN; %dates(1,1);
options_.dataset.file = [];
options_.dataset.series = [];
options_.dataset.firstobs = dates();
options_.dataset.lastobs = dates();
options_.dataset.nobs = NaN;
options_.dataset.xls_sheet = [];
options_.dataset.xls_range = [];
options_.Harvey_scale_factor = 10;
options_.MaxNumberOfBytes = 1e8;
options_.MaximumNumberOfMegaBytes = 111;
options_.analytic_derivation = 0; % Not a boolean, can also take values -1 or 2
options_.analytic_derivation_mode = 0;
options_.bayesian_irf = false;
options_.bayesian_th_moments = 0;
options_.diffuse_filter = false;
options_.filter_step_ahead = [];
options_.filtered_vars = false;
options_.smoothed_state_uncertainty = false;
options_.first_obs = NaN;
options_.nobs = NaN;
options_.kalman_algo = 0;
options_.fast_kalman_filter = false;
options_.kalman_tol = 1e-10;
options_.kalman.keep_kalman_algo_if_singularity_is_detected = false;
options_.diffuse_kalman_tol = 1e-6;
options_.use_univariate_filters_if_singularity_is_detected = 1;
options_.riccati_tol = 1e-6;
options_.lik_algo = 1;
options_.lik_init = 1;
options_.load_mh_file = false;
options_.load_results_after_load_mh = false;
options_.logdata = false;
options_.loglinear = false;
options_.linear_approximation = false;
options_.logged_steady_state = 0;
options_.mh_conf_sig = 0.90;
options_.prior_interval = 0.90;
options_.mh_drop = 0.5;
options_.mh_jscale = 0.2;
options_.mh_tune_jscale.status = false;
options_.mh_tune_jscale.guess = .2;
options_.mh_tune_jscale.target = .33;
options_.mh_tune_jscale.maxiter = 200000;
options_.mh_tune_jscale.rho = .7;
options_.mh_tune_jscale.stepsize = 1000;
options_.mh_tune_jscale.c1 = .02;
options_.mh_tune_jscale.c2 = .05;
options_.mh_tune_jscale.c3 = 4;
options_.mh_init_scale = 2*options_.mh_jscale;
options_.mh_mode = 1;
options_.mh_nblck = 2;
options_.mh_recover = false;
options_.mh_replic = 20000;
options_.recursive_estimation_restart = 0;
options_.MCMC_jumping_covariance='hessian';
options_.use_calibration_initialization = 0;
options_.endo_vars_for_moment_computations_in_estimation=[];
% Run optimizer silently
options_.silent_optimizer = false;
% Prior restrictions
options_.prior_restrictions.status = 0;
options_.prior_restrictions.routine = [];
options_.mode_compute = 4;
options_.mode_file = '';
options_.moments_varendo = false;
options_.nk = 1;
options_.noconstant = false;
options_.nodiagnostic = false;
options_.mh_posterior_mode_estimation = 0;
options_.prefilter = 0;
options_.presample = 0;
options_.prior_trunc = 1e-10;
options_.smoother = false;
options_.posterior_max_subsample_draws = 1200;
options_.sub_draws = [];
options_.ME_plot_tol=1e-6;
% options_.use_mh_covariance_matrix = 0;
options_.gradient_method = 2; %used by csminwel and newrat
options_.gradient_epsilon = 1e-6; %used by csminwel and newrat
options_.posterior_sampler_options.sampling_opt = []; %extended set of options for individual posterior samplers
% Random Walk Metropolis-Hastings
options_.posterior_sampler_options.posterior_sampling_method = 'random_walk_metropolis_hastings';
options_.posterior_sampler_options.rwmh.proposal_distribution = 'rand_multivariate_normal';
options_.posterior_sampler_options.rwmh.student_degrees_of_freedom = 3;
options_.posterior_sampler_options.rwmh.use_mh_covariance_matrix=0;
options_.posterior_sampler_options.rwmh.save_tmp_file=0;
% Tailored Random Block Metropolis-Hastings
options_.posterior_sampler_options.tarb.proposal_distribution = 'rand_multivariate_normal';
options_.posterior_sampler_options.tarb.student_degrees_of_freedom = 3;
options_.posterior_sampler_options.tarb.mode_compute=4;
options_.posterior_sampler_options.tarb.new_block_probability=0.25; %probability that next parameter belongs to new block
options_.posterior_sampler_options.tarb.optim_opt=''; %probability that next parameter belongs to new block
options_.posterior_sampler_options.tarb.save_tmp_file=1;
% Slice
options_.posterior_sampler_options.slice.proposal_distribution = '';
options_.posterior_sampler_options.slice.rotated=0;
options_.posterior_sampler_options.slice.slice_initialize_with_mode=0;
options_.posterior_sampler_options.slice.use_mh_covariance_matrix=0;
options_.posterior_sampler_options.slice.WR=[];
options_.posterior_sampler_options.slice.mode_files=[];
options_.posterior_sampler_options.slice.mode=[];
options_.posterior_sampler_options.slice.initial_step_size=0.8;
options_.posterior_sampler_options.slice.save_tmp_file=1;
% Independent Metropolis-Hastings
options_.posterior_sampler_options.imh.proposal_distribution = 'rand_multivariate_normal';
options_.posterior_sampler_options.imh.use_mh_covariance_matrix=0;
options_.posterior_sampler_options.imh.save_tmp_file=0;
options_.trace_plot_ma = 200;
options_.mh_autocorrelation_function_size = 30;
options_.plot_priors = 1;
options_.cova_compute = 1;
options_.parallel = 0;
options_.parallel_info.isHybridMatlabOctave = false;
options_.parallel_info.leaveSlaveOpen = 0;
options_.parallel_info.RemoteTmpFolder = '';
options_.number_of_grid_points_for_kde = 2^9;
quarter = 1;
years = [1 2 3 4 5 10 20 30 40 50];
options_.conditional_variance_decomposition_dates = zeros(1,length(years));
for i=1:length(years)
options_.conditional_variance_decomposition_dates(i) = ...
(years(i)-1)*4+quarter;
end
options_.filter_covariance = false;
options_.filter_decomposition = false;
options_.selected_variables_only = false;
options_.contemporaneous_correlation = false;
options_.initialize_estimated_parameters_with_the_prior_mode = 0;
options_.estimation_dll = false;
options_.estimation.moments_posterior_density.indicator = true;
options_.estimation.moments_posterior_density.gridpoints = 2^9;
options_.estimation.moments_posterior_density.bandwidth = 0; % Rule of thumb optimal bandwidth parameter.
options_.estimation.moments_posterior_density.kernel_function = 'gaussian'; % Gaussian kernel for Fast Fourrier Transform approximaton.
% Misc
% options_.conf_sig = 0.6;
% homotopy for steady state
options_.homotopy_mode = 0;
options_.homotopy_steps = 1;
options_.homotopy_force_continue = false;
% numerical hessian
hessian.use_penalized_objective = false;
% Robust prediction error covariance (kalman filter)
options_.rescale_prediction_error_covariance = false;
options_.hessian = hessian;
%csminwel optimization routine
csminwel.tolerance.f=1e-7;
csminwel.maxiter=1000;
csminwel.verbosity=1;
csminwel.Save_files=1;
options_.csminwel=csminwel;
%newrat optimization routine
newrat.hess=1; % dynare numerical hessian
newrat.tolerance.f=1e-5;
newrat.tolerance.f_analytic=1e-7;
newrat.maxiter=1000;
newrat.verbosity=1;
newrat.Save_files=1;
options_.newrat=newrat;
% Simplex optimization routine (variation on Nelder Mead algorithm).
simplex.tolerance.x = 1e-4;
simplex.tolerance.f = 1e-4;
simplex.maxiter = 10000;
simplex.maxfcallfactor = 500;
simplex.maxfcall = [];
simplex.verbosity = 2;
simplex.delta_factor=0.05;
options_.simplex = simplex;
% CMAES optimization routine.
cmaes.SaveVariables='on';
cmaes.DispFinal='on';
cmaes.WarnOnEqualFunctionValues='no';
cmaes.DispModulo='10';
cmaes.LogModulo='0';
cmaes.LogTime='0';
cmaes.TolFun = 1e-7;
cmaes.TolX = 1e-7;
cmaes.Resume = 0;
options_.cmaes = cmaes;
% simpsa optimization routine.
simpsa.TOLFUN = 1e-4;
simpsa.TOLX = 1e-4;
simpsa.TEMP_END = .1;
simpsa.COOL_RATE = 10;
simpsa.INITIAL_ACCEPTANCE_RATIO = .95;
simpsa.MIN_COOLING_FACTOR = .9;
simpsa.MAX_ITER_TEMP_FIRST = 50;
simpsa.MAX_ITER_TEMP_LAST = 2000;
simpsa.MAX_ITER_TEMP = 10;
simpsa.MAX_ITER_TOTAL = 5000;
simpsa.MAX_TIME = 2500;
simpsa.MAX_FUN_EVALS = 20000;
simpsa.DISPLAY = 'iter';
options_.simpsa = simpsa;
%solveopt optimizer
solveopt.minimizer_indicator=-1; %use minimizer
solveopt.TolX=1e-6; %accuracy of argument
solveopt.TolFun=1e-6; %accuracy of function
solveopt.MaxIter=15000;
solveopt.verbosity=1;
solveopt.TolXConstraint=1.e-8;
solveopt.SpaceDilation=2.5;
solveopt.LBGradientStep=1.e-11;
options_.solveopt=solveopt;
%simulated annealing
options_.saopt.neps=10;
options_.saopt.maximizer_indicator=0;
options_.saopt.rt=0.10;
options_.saopt.MaxIter=100000;
options_.saopt.verbosity=1;
options_.saopt.TolFun=1.0e-8;
options_.saopt.initial_temperature=15;
options_.saopt.ns=10;
options_.saopt.nt=10;
options_.saopt.step_length_c=0.1;
options_.saopt.initial_step_length=1;
% particleswarm (global optimization toolbox needed)
particleswarm.Display = 'iter';
particleswarm.DisplayInterval = 1;
particleswarm.FunctionTolerance = 1e-6;
particleswarm.FunValCheck = 'on';
particleswarm.HybridFcn = [];
particleswarm.InertiaRange = [0.1, 1.1];
particleswarm.MaxIterations = 100000;
particleswarm.MaxStallIterations = 20;
particleswarm.MaxStallTime = Inf;
particleswarm.MaxTime = Inf;
particleswarm.MinNeighborsFraction = .25;
particleswarm.ObjectiveLimit = -Inf;
particleswarm.UseParallel = false;
particleswarm.UseVectorized = false;
options_.particleswarm = particleswarm;
% prior analysis
options_.prior_mc = 20000;
options_.prior_analysis_endo_var_list = {};
% did model undergo block decomposition + minimum feedback set computation ?
options_.block = false;
% model evaluated using a compiled MEX
options_.use_dll = false;
% model evaluated using bytecode.dll
options_.bytecode = false;
% if true, use a fixed point method to solve Sylvester equation (for large scale models)
options_.sylvester_fp = false;
% convergence criteria to solve iteratively a sylvester equations
options_.sylvester_fixed_point_tol = 1e-12;
% if true, use a fixed point method to solve Lyapunov equation (for large scale models)
options_.lyapunov_fp = false;
% if true, use a doubling algorithm to solve Lyapunov equation (for large scale models)
options_.lyapunov_db = false;
% if true, use a square root solver to solve Lyapunov equation (for large scale models)
options_.lyapunov_srs = false;
% convergence criterion for iteratives methods to solve lyapunov equations
options_.lyapunov_fixed_point_tol = 1e-10;
options_.lyapunov_doubling_tol = 1e-16;
% if true, use a cycle reduction method to compute the decision rule (for large scale models)
options_.dr_cycle_reduction = false;
% convergence criterion for iteratives methods to solve the decision rule
options_.dr_cycle_reduction_tol = 1e-7;
% if true, use a logarithmic reduction method to compute the decision rule (for large scale models)
options_.dr_logarithmic_reduction = false;
% convergence criterion for iteratives methods to solve the decision rule
options_.dr_logarithmic_reduction_tol = 1e-12;
% convergence criterion for iteratives methods to solve the decision rule
options_.dr_logarithmic_reduction_maxiter = 100;
% dates for historical time series
options_.initial_date = dates();
% discretionary policy
options_.discretionary_policy = 0;
options_.discretionary_tol = 1e-7;
% Shock decomposition
options_.parameter_set = [];
options_.use_shock_groups = '';
options_.shock_decomp.colormap = '';
options_.shock_decomp.init_state = 0;
options_.shock_decomp.with_epilogue = false;
% Shock decomposition realtime
options_.shock_decomp.forecast = 0;
options_.shock_decomp.presample = NaN;
options_.shock_decomp.save_realtime = 0; % saves memory
options_ = set_default_plot_shock_decomposition_options(options_);
% Nonlinearfilters
options_.nonlinear_filter = [];
% SBVAR & MS SBVAR initializations:
% SBVAR
options_.ms.vlistlog = [];
options_.ms.restriction_fname = 0;
options_.ms.cross_restrictions = false;
options_.ms.contemp_reduced_form = false;
options_.ms.real_pseudo_forecast = 0;
options_.ms.dummy_obs = 0;
options_.ms.ncsk = 0;
options_.ms.indxgforhat = 1;
options_.ms.indxgimfhat = 1;
options_.ms.indxestima = 1;
options_.ms.indxgdls = 1;
options_.ms.cms =0;
options_.ms.ncms = 0;
options_.ms.eq_cms = 1;
options_.ms.banact = 1;
options_.ms.log_var = [];
options_.ms.Qi = [];
options_.ms.Ri = [];
options_.ms.lower_cholesky = 0;
options_.ms.upper_cholesky = 0;
options_.ms.constants_exclusion = 0;
% MS SBVAR (and some SBVAR)
options_ = initialize_ms_sbvar_options(M_, options_);
% saved graph formats
options_.graph_save_formats.eps = 1;
options_.graph_save_formats.pdf = 0;
options_.graph_save_formats.fig = 0;
% risky steady state
options_.risky_steadystate = false;
% endogenous prior
options_.endogenous_prior = false;
options_.endogenous_prior_restrictions.irf={};
options_.endogenous_prior_restrictions.moment={};
% OSR Optimal Simple Rules
options_.osr.opt_algo=4;
% use GPU
options_.gpu = false;
%Geweke convergence diagnostics
options_.convergence.geweke.taper_steps=[4 8 15];
options_.convergence.geweke.geweke_interval=[0.2 0.5];
%Raftery/Lewis convergence diagnostics;
options_.convergence.rafterylewis.indicator=false;
options_.convergence.rafterylewis.qrs=[0.025 0.005 0.95];
%tolerance for Modified Harmonic Mean estimator
options_.marginal_data_density.harmonic_mean.tolerance = 0.01;
% Options for lmmcp solver
options_.lmmcp.status = false;
% Options for lcppath solver
options_.lcppath.A = [];
options_.lcppath.b = [];
options_.lcppath.t = [];
options_.lcppath.mu0 = [];
% Options for mcppath solver
options_.mcppath.A = [];
options_.mcppath.b = [];
options_.mcppath.t = [];
options_.mcppath.mu0 = [];
%Figure options
options_.figures.textwidth=0.8;
options_.varobs_id=[]; %initialize field
end
|